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1 Introduction

Maniskill is a simulation benchmark which contains several tasks that require the agent to interact
with the environment. It was first introduced in 2021 by the team of Tongzhou Mu et al[9] and
later developed more, which leads to the Maniskill2 benchmark[4]. Recently, using the latest
GPU simulation and rendering techniques, Tao et al released the Maniskill3[13], which supports
multiprocess and more new features. The Maniskill series benchmark support diverse objects,
robots, scenes, tasks and algorithms with paralleled and efficient simiulation and rendering. It also
has a large-scale dataset for trajectories.

In this project, we choose several tasks by single or double robotic arms to complete and
use the reinforcement learning algorithm to train the agent. We use the BC and PPO algorithm
implemented in the benchmarks and try to make improvements on them, while observing suprising
reward hacking during the experiments. We successfully design a new task called ’Push Can and
Open the Microwave Door’. We also develop a new task generator using LLM for the Maniskill3
benchmark, which is called ManiGen. For demonstrations, please check our website: Exploring
ManiSkill.

2 Preliminaries

Robotics simulators are crucial tools for developing and testing robot control algorithms in a safe,
cost-effective, and reproducible environment. They provide a virtual sandbox for experimenting
with various robot designs, environments, and tasks without the risks and expenses associated
with real-world deployment. However, a persistent challenge is the ”reality gap” – the discrepancy
between the simulated and physical worlds. This gap stems from simplified physics models,
idealized sensor data, and the lack of unpredictable real-world factors in simulations. Overcoming
this gap is a primary focus of research in robotics simulation, with techniques like domain random-
ization, system identification, and the incorporation of real-world data used to bridge the divide
and enable effective sim-to-real transfer of learned policies. Simulators like ManiSkill3 are pushing
the boundaries of realism and scalability, offering high-fidelity physics, diverse environments, and
GPU-accelerated performance to facilitate the development of more robust and generalizable robot
behaviors.

https://sites.google.com/view/eai-manigen/
https://sites.google.com/view/eai-manigen/
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In this project, we choose PPO in RL and BC in IL to make improvement on. The PPO (Proximal
Policy Optimization) algorithm[11] is a policy gradient method that is widely used in reinforcement
learning. It is a kind of on-policy method that can be used to optimize the policy directly. The PPO
algorithm is based on the trust region policy optimization method, which can prevent the policy
from changing too much in each iteration. The PPO algorithm has two versions, the PPO-Clip and
PPO-Penalty. The PPO-Clip uses the clipped surrogate objective function to optimize the policy,
while the PPO-Penalty uses the penalty objective function. The PPO algorithm has been widely
used in reinforcement learning and has achieved good results in many tasks. PPO has herited the
advantages of TRPO[10] and has a better performance in the training process. Until now, PPO is
still one of the most popular and powerful algorithms in reinforcement learning.

The BC (Behavioral Cloning) algorithm[14] is a kind of imitation learning algorithm that can be
used to train the agent by learning from the expert’s demonstration. The BC algorithm is based on
the supervised learning method, which can be used to learn the policy directly. The BC algorithm
has been widely used in reinforcement learning and has achieved good results in many tasks. The
BC algorithm is simple and easy to implement, which makes it a good choice for the beginners in
reinforcement learning.

3 Baseline Results

We run PPO and diffusion-policy on task PushCube, using the default baseline settings from
ManiSkill repo. The results align with the launched benchmarks.

4 Algorithm Modification

We have made some modifications to the PPO and BC algorithms to improve their performance.
The modifications are as follows:
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• Change the network structure: we try to add more layers, such as observation encoder, mem-
ory module, attention mechanism, etc., to the network structure to improve the performance
of the algorithm.

• Learning Rate Schedule: We intoduce learning scheduler OneCycleLR to the orginial behavior
cloning, which show good results.

4.1 Modifications on PPO

In PPO learns a history independent policy, i.e. Pr(at|s1, ..., st) = Pr(at|st), it may suffer from poor
data efficiency as intuitively the model’s next action may counteract the current action’s effect.
This data efficiency problem is more pronouned in long-horizon and sparse reward tasks, as the
model need to build on a longer series of actions aiming in the desired direction to get a positive
return. Based on this intuition, we explore the idea of leveraging the agent’s history observations
to achieve better performance, especially in long-horizon tasks.

We integrated Gated Recurrent Network(GRU [3]) to the observation of PPO networks, which
we refer to as PPO-GRU. Specifically, we augment the current observation to a history-intergrated
form s̃t = f (st, ht−1), where ht−1 represents the hidden state in GRU layer. We furthermore explore
other model architectures to obtain three additional variants of this model:

1. PPO-LSTM: Instead of using GRU to guide the observation update, we substitute it with
Long short-term memory (LSTM [5]).

2. PPO-Attention: We intergrate the attention mechanism [1] to the current structure to obtain
state representations that intuitively takes into account their relationship with other states.

3. Energy-Based PPO: Instead of learning a policy π(a|s) = hϕ(s), we learn an energy-based

model[2] Eϕ(s, a), and the policy is determined by π(a|s) =
Eϕ(s, a)

∑a′∈A Eϕ(s, a′)
.

Examples of the result is shown in Figure 3(a) and Figure 3(b).
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However, in simulated environments, where states are fully-observed, these proposed algo-
rithms fail to surpass PPO by a large margin. Aside from the reason that Mani-Skill 2’s fully-
observation environment is sufficient enough for Reinforcement Learning without need for ad-
ditional state representations, we believe part of the reason for this phenomenon is the agent is
hacking the hand-crafted reward [12]. An illustration in shown in figure 4.

Figure 4

We believe that in Partially-Observable environments, for instance real-world robotic deploy-
ments, the current sensory observations may not be sufficient to deduce the current state, therefore
leveraging history can give the agent more information to it’s current state. Therefore our modifica-
tion’s effect may be more pronounced in POMDP environments.

4.2 Modifications on Behavior Cloning

Figure 5: Learning Rate Scheduler

We introduce OneCycleLR to Behavior Cloning.
OneCycleLR dynamically alters the learning rate
under certain schedule. The setting we choose is to
first linearly increase the learning rate until certain
point (0.3 * total steps), and then decrease it linearly.
The basic idea is that boosting the learning rate in
early stages can promote the model to learn more,
while decreasing in later stages can improve the ro-
bustness. The settings we use is the default setting
of the behavior cloning repo, with the same network
architecture for both cases. Except for originalBC for
PullCube, we run BC for 10000 steps for all cases. For PickCube, we use 1000 episodes of data
from motion planning. For PullCube, we use 947 episodes. For RollBall, we use 215 episodes from
reinforcement learning. Our result shows more than 10% improvement on the original BC.
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5 New Task Proposal

The new task we design here is called ’Push Can and Open Microwave Door’. The robot first needs
to push away the can in front of the microwave door to some certain point, so that opening the
door will not let the object fall off. Then it needs to open the door of the microwave.

We use PPO for the task training. The reward function we design is divided into two stages.
The first reward function is responsible for pushing the object to certain range. We penalize the
distance between the robot end effector and the object, as well as the distance between the object
and the center of the goal range. The second reward function is for opening the microwave door,
and is only valid when the first stage returns success. It first penalizes the distance between end
effector and handle link, and then rewards the opening angle of the door.

Through PPO for 35 million steps we achieve a success-at-once rate of 0.88. We judge final
success by two measurements: 1) whether the object is 0.2m within the goal center; 2) whether the
opening angle of the door is larger than 0.75 of its maximum range. Our randomization contains
the initial pose of the microwave, which is in a 0.05m * 0.05m region, the initial pose of the robot
relative to the microwave, which is 2.5-3m away and -9 to 9 degrees from the microwave, the
position of the object, which is in a 0.25m range on the y-axis, and the orientation of the object.

Figure 9: Success Rate with 7/8
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Figure 10: training curves

6 Generative Simulation for ManiSkill: ManiGen

The name ManiGen follows the style of GenSim series[6] and RoboGen[15]. We follow the idea of
using LLM to generate new, diverse tasks and design reward functions. It is fully compatible with
the Maniskill3 benchmark, and makes full use of its advantage: Maniskill3 provides user-friendly
interface for scene formulation and new task design, enables query for link and mesh positions
with their names or types, and provides fast simulation and training.

The pipeline is mainly composed of 4 parts: First, it randomly samples objects from the asset
dataset(we use the GenSim2 dataset, which is mainly inherited from Parnet-Mobility Dataset). At
most two rigid objects, and one articulated object are available. Then, it queries LLM (we use gpt-
3.5) for possible task names, descriptions, decompositions and scene properties, including whether
the scene uses table, how many objects of each type it contains, the names of the links, joints and
meshes whose information is needed for the task, as well as whether the task requires to initialize
the joint angle. The prompt contains all link, mesh and joint information of the objects, and promote
LLM to think about the use of each part. After that, the LLM is queried again to generate code for
four functions: get obs extra, evaluate, compute dense reward and set goal and parameter. The
prompt contains the previously generated task configurations. Finally, the functions are integrated
with a task template that enables automatic object loading and scene generation. Usually we can
directly start training on the generated code.

We consider three scene settings: only rigid bodies, only articulated bodies and mixed, and
write prompt for task and code generation for each one of them. Thus, our pipeline allows diverse
scene generations as there can be unrelevant objects on the scene.

Figure 11: Example Scenes

The main problem generative simulation research tries to tackle is how to acquire robot learning
data with high efficiency and low human participation. We believe that a generative simulation
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Transfer Golf Ball Open the Box Remove the Lid

Figure 12: Example Tasks (See our website for demos)

pipeline is promising to scale up the robot learning dataset in the Maniskill environment. Mean-
while, we identify some remaining challenges in our system, and some of them are fundamental to
this field and not only exist in our projects. We list them as follows:

• Lack of Task Diversity. While currently, generative simulation pipelines can usually guarantee
the diversity of scene by sampling distracting bodies and scene configurations, in our pipeline,
as well as in our experience of implementing other generative simulation pipelines like
Gen2Sim[7], we all observe that LLM always output similar tasks with similar asset inputs,
especially for articulated objects. For example, given a microwave, the pipelines can only
generate combinations of opening and closing the door. This is mainly due to the limitation
of LLM itself, and partially due to human prompt and asset labeling.

For rigid bodies, the imagination of LLM is broader. For instance, in our pipeline, given
bottles and balls, other than primitive pick-and-place, LLM generates a task called bottle-
bowling, using the ball to knock the bottles over. However, the problem here is the high
difficulty, beyond the capability of LLMs and RL.

• LLM’s inability to generate good reward functions, especially for long-horizon tasks. There
are three main challenges here: the first is that LLM may not always output correct and
runnable code; the second is that LLM may fail to understand the time and logic order of
the tasks, and its output may be self-contradictory (i.e. for a long-horizon task that requires
multiple picking and placing, it may put all reaching, grasping and placing rewards together),
which we solve to some extent by urging it to consider the order in our prompt; the third is
that it tends to fail when the task is complex, and explicit reward concerning positions and
velocities cannot easily solve it. For the latter case, we guess incorporating reward-refinement
system like Eureka[8] can help.

• Unsatisfiable performance of RL systems and reward hacking, coupled with insufficient
essential information in the raw asset dataset. In many cases, a pure-RL task solver is
incapable or inefficient. In our project, we rarely succeed with long-horizon generated
tasks, even with seemingly correct and resonable generated reward functions. Some existing
generative simulation pipelines look to motion planning for help. RoboGen uses motion
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planning to first guide the robot to an area near the goal object, while GenSim2 uses a
kPAM motion planner as its main solver. While these approaches significantly enhance the
performance of the tasks, there’s still potential for improvement, to both lift performance and
reduce human efforts if other solver systems can be added.

Meanwhile, we find that the information of objects agent can acquire from raw asset dataset
and the simulator is sometimes not enough for task completion. For example, to open a
laptop, the simulator can only provide the center of the laptop screen mesh, but the edge
center coordinate is what matters the most. GenSim2 labels the articulated objects with
keypoint coordinate, but the fixed coordinate cannot cope with rotation and scaling of objects.
We need more modules to be imported, to improve the agent’s knowledge and capability.

We hope that there will be great advance in enhancing data quality in the field of generative
robotic simulation.

7 Conclusion

In this project, we explored the capabilities and challenges of Reinforcement Learning and Imitation
Learning algorithms using Maniskill2 benchmark for robotic simulation tasks. We evaluated the
performance of baseline algorithms. Furthermore, we proposed algorithmic improvements on both
PPO and BC algorithms by introducing architectural designs in PPO and integrating OneCycleLR
learning rate scheduler into the in BC. Through empirical study, we demonstrated the effectiveness
of our approach.

As for new task proposal, we designed ’Push Can and Open Microwave Door’ task, a ma-
nipulation task that evaluates the ability for algorithms to learn in complex and long-horizon
environments. We then introduce ManiGen, a generative simulation tool that utilizes the generative
powers of large language models to automate the creation of diverse and scalable tasks. Despite
the challenges remaining in our simulation pipeline, we believe this work verifies the potential
of using generative simulation pipelines to scale up robot learning, as well as offering a valuable
resource for future research in the field.
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