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Abstract

Vision-Language Models (VLMs) face challenges in performing accurate counting,
a critical task requiring both visual perception and reasoning. Current VLMs
separate these processes, limiting their ability to handle counting tasks effectively.
To address this, we propose the "Watch-and-Learn" framework, which enables
continuous visual perception during counting by integrating two function calls,
“Point Annotation” and “See Image.” This approach allows the model to iteratively
process visual information, improving its reasoning ability. Additionally, we use
Reinforcement Learning Algorithms to further refine the model’s performance in an
online learning environment. Our method enhances VLMs’ counting capabilities,
bridging the gap between visual perception and reasoning.

1 Introduction

In recent years, Vision-Language Models (VLMs) have made significant strides, powered by the
vast world knowledge encoded in Large Language Models (LLMs) [1, 3, 19, 9]. These multimodal
models have shown impressive capabilities in tasks such as visual question answering [11], visual
grounding [15], and optical character recognition [21], demonstrating their potential in handling
diverse visual and textual inputs. The typical training pipeline for VLMs consists of two key phases
[4, 17, 20]: first, developing a robust visual understanding through exposure to large datasets of
image-caption pairs, and second, fine-tuning the model to enable problem-solving based on these
visual inputs. While this process has yielded substantial improvements in a wide array of tasks, there
remains a critical limitation—VLM:s often fail to engage in the type of intermediate visual reasoning
required for tasks that demand detailed and nuanced understanding.

A notable example of such a limitation arises in counting, an operation seemingly simple for humans
but surprisingly challenging for current VLMs. Humans intuitively approach counting as an iterative
process, revisiting and refining their attention to visual scenes by focusing on specific objects or
regions multiple times. This cyclical approach—marked by a continuous back-and-forth between
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perception and reasoning—is a key element of human cognition. In contrast, VLMs process visual
inputs in a single pass, separating perception from reasoning and leading to a loss of the necessary
intermediate steps for tasks like counting. The one-time pass through the image means the model is
unable to dynamically adjust its focus or reasoning based on evolving visual information, ultimately
hindering its performance in tasks that require this kind of iterative process. While significant progress
has been made in improving VLMs’ overall capabilities, their performance in counting tasks and
other tasks that demand fine-grained visual attention continues to fall short. This gap highlights the
need for new approaches that integrate continuous visual perception with logical reasoning, enabling
VLMs to better mimic human cognitive processes. Inspired by how humans tackle complex visual
problems through manipulations—such as zooming in on specific regions, marking points of interest,
or revisiting parts of an image—we propose a novel method to address this gap. By enabling VLMs to
perform counting tasks iteratively, using continuous visual attention and dynamic reasoning, we aim
to bridge the gap between visual perception and reasoning, improving model accuracy and reliability
in handling tasks that involve detailed visual analysis.

Our work introduces the "Watch-and-Learn" framework, a solution that allows VLMs to continuously
perceive and reason about visual inputs during tasks like counting. This approach integrates the
model’s ability to focus on different regions of an image through iterative perception, ensuring
that each step of the counting process builds on the previous one. By adopting this method, we
demonstrate a significant improvement in the model’s ability to handle visual reasoning tasks across
four counting benchmarks, providing new insights into how VLMs can be better trained to address
challenges in real-world applications requiring precise and iterative visual reasoning.

2 Terminology

Counting, a task that is inherently simple for humans, presents a significant challenge for Vision-
Language Models (VLMs). The difficulty lies in the fact that counting requires two essential
capabilities: visual perception and visual reasoning [7].

Visual perception refers to the model’s ability to identify and localize relevant objects within an
image, allowing it to determine where to direct its attention. This foundational skill enables the
model to distinguish between different elements in the visual scene. On the other hand, visual
reasoning pertains to the model’s ability to construct logical thought trajectories based on the visual
context provided by the perception module. For example, using a Vision Transformer (ViT), the
model processes the visual input and interprets the observed scene, building a coherent understanding
necessary for complex reasoning tasks.

The challenges VLMs face when performing counting tasks can be attributed to two main factors:
the lack of continuous visual perception and the disjointed relationship between visual perception
and reasoning during training. In human counting, individuals engage in an iterative, cyclical
process—observing, counting, verifying, and then recounting—focusing repeatedly on different
regions of the image to refine their understanding. In contrast, VLMs typically only view an image
once, where the visual tokens are concatenated alongside the textual tokens in a single input sequence.
This static process limits their ability to re-focus and adjust attention based on evolving insights,
creating a disconnect between the initial perception and the reasoning that follows.

Moreover, while human counting is inherently a dynamic process, where visual perception and
reasoning continuously interact, VLMs are trained in a manner that separates these processes. The
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Figure 2: Point Annotation retrieves an image from the buffer along with a set of coordinates
generated by the model, labels the image according to these coordinates, and subsequently saves the
annotated image back to the buffer.

perception is fixed in the prompt, and reasoning is separated by the model’s output. This division
results in a lack of continuity during tasks that demand attention to detail and refinement across
multiple steps.

To address these issues, we introduce a novel framework called “Watch-and-Learn”. In this framework,
we propose two function calls designed to facilitate a continuous process of visual perception and
reasoning: Point Annotation and See Image. With these two function call, the whole counting process
can be formulated as Algorithm 1.

Point Annotation takes an image and a set of coordinates as input and returns an image with labeled
annotations based on those coordinates. During the counting process, the model will output the
coordinates of the objects it counts. This function call receives an image and a set of coordinates
representing the identified objects, then marks these coordinates on the image with labels or markers.
During training, we found that the coordinates generated by the policy model may not be accurate, so
we add grid and axis to strengthen model’s marking accuracy. The annotated image is stored in an
image buffer, allowing it to be preserved for future reference. This image buffer holds the modified
image until the See Image function is invoked, at which point the model can access the labeled image
tokens from the buffer to continue processing and refining the counting task.

See Image takes an image as input and outputs a series of image tokens corresponding to that input.
Specifically, the function retrieves a previously annotated image from the buffer, which has been
marked with the coordinates of the counted objects. This annotated image is then encoded through a
Vision Transformer (ViT) into a sequence of image tokens. These image tokens are appended to the
current decoding sequence, allowing the model to integrate the visual information dynamically. As
the model continues decoding, the newly added image tokens become part of the attention mechanism,
enabling the model to focus on the visual details within the image. This process ensures that the
model can continuously attend to and incorporate new visual information throughout the counting
process, fostering a seamless interaction between perception and reasoning.

3 Experiments

3.1 Experimental Setup

Models. For the purpose of our experiments, we utilize Qwen2.5-VL-Instruct-7B [5], a state-
of-the-art vision language model. This model is part of the Qwen2.5 series and is designed to handle
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Algorithm 1 Counting Process using "Watch-and-Learn" Framework
1: Input: Image 1

2: Initialize Image Buffer B

3: Initialize Token Sequence T'

4: Initialize Counter count = 0

5: while counting is not finished do

6: Generate Next Token: Decode next token from sequence 7' > Model continues decoding

sequence

7: if next token is Point Annotation then

8: Point Annotation(Image I') > Model calls Point Annotation to mark points on the image
9: Annotated Image 1,,,,,,¢ < Store annotated image in buffer B
10: Increment count > Update the counting result
11: else if next token is See Image then
12: See Image(Image /,,,,,0¢) > Model retrieves annotated image from buffer and encodes it
13: Image Tokens T;qge < ViT(Ignnot) > Encode annotated image into token sequence
14: Append Timage to T > Add image tokens to the current sequence for future decoding
15: end if

16: end while
17: Output: Final Count count

multimodal tasks involving both visual and textual inputs. We choose the parameter size of 7B for
balancing performance with training costs.

Training Data. For Supervised Finetuning, we utilize a subsection of 20k from PixMo-Points
[10], a dataset of images paired with referring expressions and points marking the locations the
referring expression refers to in the image. The dataset contains a diverse range of points and
expressions, with many high-frequency (10+) expressions annotated by human annotators. For
Reinforcement Learning Finetuning [13], we utilize a 10k subset of PixMo-Points, detailed data
processing pipelines can be seen Section 3.2.

Task Description. Counting encompasses two key dimensions: Object Counting and Instructional
Counting. Object Counting involves the simple task of counting objects in an image, requiring basic
visual perception to identify and enumerate instances of the objects. Models like Grounding DINO,
which specialize in object detection and localization, are particularly effective in this domain. On
the other hand, Instructional Counting extends this task by adding specific conditions or instructions,
such as counting only those objects that meet certain attributes (e.g., "How many people are wearing
red hats?"). This requires both perceptual reasoning and the ability to follow instructions, making
it more complex than Object Counting. While Grounding DINO excels at the former, its ability to
handle the conditional reasoning in Instructional Counting remains limited. Both dimensions are
essential for a comprehensive evaluation of counting tasks, measuring the model’s ability to handle
both basic object recognition and more complex, instruction-driven reasoning.



Instructional Counting Object Counting

Model Pixmo-point 500 [10] Counting Bench FSC-147 [16] Pixmo Count Test [10] ~ AVG Acc.  AVG RMSE

Acct RMSE] Acct  RMSE|  Acct  RMSE|  Acct RMSE|

GPT-4o0 [12] 309 8.3 85.4 1.1 9.7 103.2 50.8 2.1 20.3 55.8
Gemini 2.5 Flash [8] 384 16.2 83.2 1.1 12.0 334.0 68.8 1.4 252 175.1
Qwen2.5 VL 72B [6] 39.2 7.6 83.7 1.2 12.7 64.9 63.5 1.5 26.0 36.3
Qwen2.5 VL 7B [6] 252 152 80.7 1.0 77 118.1 51.6 1.8 16.5 66.7
CountGD (2] 17.6 62.8 75.4 8.3 28.7 119.4 70.9 8.5 232 91.1
SFT 442 7.7 73.4 2.6 14.7 152.4 67.8 1.3 29.5 80.1
Replay RL 44.1 6.2 74.2 32 18.6 139.8 71.6 1.6 314 73.0

Table 1: A performance comparison of various foundation models on instructional and object
counting tasks, evaluated by accuracy (Acct) and Root Mean Square Error (RMSE, ) across multiple
benchmarks.

3.2 Data Processing

The PixMo-Points dataset consists of images containing various objects, along with their corre-
sponding coordinates. In the data processing pipeline, we first apply the DBSCAN [ 18] clustering
algorithm to partition the set of coordinates P = {p1,pa, ..., pn } into distinct groups, denoted as
clusters C = {C4, Cs, ..., Cy, }, where each C; C P is a subset of points in the i-th cluster.

Subsequently, within each cluster C;, we sort the points {p; € C;} according to their position in a
direction from the upper-left to the lower-right. This sorting is based on a predefined metric f(p;) that
compares the positions of the points, such as their coordinates (z;,y;), so that for all p;, p, € C;:

fpj) < flor) = (z5,95) 2 (T, Yx)
Finally, we arrange the clusters themselves, C, in the same directional order, ensuring consistency

across the dataset. This ordering is also determined by the positions of the centroids c¢; of each cluster
C;, where the centroid ¢; is computed as:

1 1
Ci = @ Z ﬂﬂj,E ze;y]

p; €C; | pj

Thus, the clusters are sorted such that:

¢ ¢, for i<k

Additionally, we applied other counting strategies to the raw dataset, resulting in different supervised
fine-tuning data. The details of these strategies can be found in Section 3.5.2.

3.3 Evaluation.

Benchmarks. For the task of Instruction Counting, we validate the effectiveness of our approach
under two well-established benchmarks:
(i). Pixmo-Point [10], in-domain data with diverse range of point annotations.
(ii). CountBench [14], a image-text counting benchmark for evaluating a model’s understanding
of object counting.
For the task of Object Counting, we utilize two benchmarks:
(1). FSC147 [16], a dataset of 147 object categories containing over 6000 images that are
suitable for the few-shot counting task.

(i1). Pixmo-Count [10], a dataset of images paired with objects and their point locations in the
image.



Instructional Counting Object Counting

Model Pixmo-point 500 [10] Counting Bench ESC-147 [16] Pixmo Count Test [10] ~ AVG Acc.  AVG RMSE

Acct RMSE| Acct  RMSE]  Acet RMSE|  Acct RMSE]

Text-CoT RL (step=0) 44.1 72 75.4 2.6 15.8 153.8 66.5 1.4 30.0 80.5
Text-CoT RL (step=280) 414 6.9 71.9 23 13.1 138.7 65.4 1.2 27.3 72.8
Image Replay RL (step=0) 44.2 7.7 73.4 2.6 14.7 152.4 67.8 1.3 29.5 80.1
Image Replay RL (step=80) 44.1 6.2 74.2 32 18.6 139.8 71.6 1.6 314 73.0

Table 2: Performance of Text-CoT and Image Replay with Reinforcement Learning Finetuning. Step
indicates the number of gradient steps in RL finetuning, where step=0 represents the original model
with only the incorporation of the proposed technique.

Evaluation Metrics. To validate our model’s performance in counting tasks, we adopt the following
two metrics:

(1). Accuracy (Acc): This metric measures the proportion of examples where the predicted
count exactly matches the ground truth. It reflects the model’s ability to produce precise
predictions and is defined as:

1 N
Ace = & ;Myi = uil; Q)

where §j; is the predicted count, y; is the ground-truth count, and I[-] is the indicator function.

(i1). Root Mean Square Error (RMSE): This metric evaluates the overall deviation between
predicted and ground-truth counts. It penalizes large errors more severely and is computed
as:

N
1
RMSE = | — Ui — i )?. 2
N ;@ i) @
RMSE provides a measure of the model’s average prediction error magnitude across the
dataset.

3.4 Main Results
3.5 Analysis

In this section, we analyze the benefits of Image Replay compared to Text-CoT, as well as the
influence of different Counting Strategies.

3.5.1 Image Replay vs. Text-CoT

We compare the performance of using Image Replay against the baseline method of Text-CoT
for Reinforcement Learning fine-tuning. As shown in Table 3.5.1, simply adopting reinforcement
learning with Text-CoT on counting tasks leads to a performance drop, whereas Image Replay RL
continues to improve. We deduce that this is due to our replay algorithm, which simultaneously trains
the perception and reasoning modules which is important for counting tasks. Notably, Image Replay
RL achieves superior performance on counting tasks with fewer gradient steps, demonstrating the
effectiveness and sample efficiency of our proposed Image Replay method.

3.5.2 Different Counting Strategies

In this section, we explore different strategies of doing point annotations for the given image.
Specifically we consider three strategies:

* Random Ordering: The ordering of the objects is assigned randomly, agnostic to the
underlying clusters.

* Cluster Ordering: The ordering of the objects is assigned based on Clusters. Inside each
cluster, the ordering is assigned randomly.



Instructional Counting Object Counting

Model Pixmo-point 500 [10] Counting Bench FSC-147 [16] Pixmo Count Test [10] ~ AVG Acc.  AVG RMSE

Acct RMSE] Acct  RMSE]  Acet  RMSE|  Acct RMSE]

Image Replay

w/o Annotation 40.2 8.1

Image Replay

+ Random Ordering 38.0 8.2 66.0 2.8 12.0 153.6 65.2 0.7 1.5

Image Replay

+ Cluster Ordering 442 7.7 734 2.6 14.7 152.4 67.8 1.3 29.5 80.1
Image Replay

+ Direction Ordering 443 7.5 82.7 2.6 21.0 156.2 743 2.5 327 81.9

Table 3: Performance of Image Replay with different counting strategies.

* Direction Ordering: The ordering of the objects is assigned based on Clusters. Inside each
cluster, the ordering is assigned based on directions.

These three strategies resemble the strengthening of deterministic ordering in a progressive manner,
i.e. Random Ordering forces no ordering constraints at all, while Cluster Ordering enforces the
ordering of clusters, and Direction Ordering take this a step further by defining the ordering inside
each cluster.

As shown in Table 3.5.2, while all annotation strategies except Random Ordering outperform image re-
play with no annotations at all, the annotation strategies significantly impact the model’s performance.
Namely, the overall performance of Image Replay with Direction Ordering is the strongest, followed
by Image Replay with Cluster Ordering, and Random Ordering achieves the worst performance.

3.6 Case Study

In this section, we present two inference results from our model, which has been trained through both
the Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) phases. The first result shown
in 3.6 represents a scenario in which the objects are well-aligned, while the second result shown
in 3.6 reflects a scenario where the objects being counted are intricately arranged. Regarding the
marking tags appearing in the image, objects with the same tag are grouped into a single cluster (i.e.,
counted within one function call), and the tag count increases accordingly, e.g. the objects labelled as
"1" are counted first, then objects labelled as "2" are counted.

4 Conclusion

In this paper, we introduced the "Watch-and-Learn" framework to enhance the counting capabilities
of Vision-Language Models (VLMs). By integrating continuous visual perception through iterative
processes, our approach enables the model to dynamically adjust its focus and reasoning, closely
mimicking human cognitive strategies for complex visual tasks. This method bridges the gap between
visual perception and reasoning, significantly improving VLMs’ performance in tasks that demand
detailed and iterative visual analysis. We demonstrated the effectiveness of our framework across
four counting benchmarks, showing that our approach not only enhances the accuracy and reliability
of VLMs in counting tasks but also lays the foundation for more advanced solutions in other domains
requiring similar fine-grained visual attention. The use of Reinforcement Finetuning further refines
the model’s performance, allowing it to adapt in an online learning environment. Our work provides
valuable insights into how VLMs can be better trained to handle real-world challenges, offering a
new direction for improving multimodal models’ reasoning capabilities.
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Figure 4: The well-aligned counting scenario, our model counts row by row in horizontal order.

Figure 5: The intricately arranged counting scenario, our model counts cluster by cluster from
upper-left to lower-right.
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