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Abstract

We present a comprehensive theoretical analysis of k-means clustering algorithms, a funda-
mental family of partitional clustering methods that minimize distances between data points
and their assigned cluster centers. While k-means clustering has been extensively studied, a
systematic theoretical analysis and comparison of different k-means variants remains lacking.
Our work first establishes the NP-completeness of k-means clustering. We then characterize the
structure of locally optimal solutions and prove convergence properties for the k-means algo-
rithm. We further examine various k-means paradigms, such as K-Medoids, Fuzzy K-Means,
and IK-Means. Through rigorous theoretical analysis and experimental evaluation, we provide
insights into the trade-offs among these variants. Our results offer theoretical guidance for select-
ing appropriate k-means variants and suggest directions for future algorithmic improvements
in k-means clustering. Project Page

1 Introduction

”Do not forget that clusters are, in large part, on the eye of the beholder.” [19]

Clustering, as a fundamental problem in computer science, focuses on partitioning a set of
objects into groups (clusters) such that objects within the same cluster are more similar to each other
than to those in different clusters [27]. Among various clustering approaches, k-means clustering
[32] has emerged as one of the most widely studied and applied methods, owing to its simplicity,
efficiency, and theoretical guarantees. The k-means clustering problem, which aims to minimize
the sum of squared distances between data points and their assigned cluster centers, presents
significant computational challenges and has been proven to be NP-hard when the number of
clusters exceeds one [30, 16].

Within the broader context of k-means methodologies, various algorithmic variants have
been developed to address different aspects of the clustering challenge. These variants can be
broadly classified based on their initialization strategies (e.g., k-means++ [6] ), distance metrics (e.g.,
spherical k-means [21] ), kernel transformations (e.g., kernel k-means [38] ), and computational
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efficiency improvements (e.g., mini-batch k-means [42] , online k-means [13] ). Each variant presents
unique theoretical properties and computational characteristics that warrant careful analysis.

This survey aims to provide a systematic examination of k-means clustering algorithms and their
variants from an algorithmic perspective. We focus on three key aspects: theoretical foundations,
algorithmic complexity and convergence analysis, and empirical performance evaluation.

The main contributions of this work include:

• A complete theoretical framework including NP-completeness proof and local optimality
analysis

• A rigorous theoretical analysis of different k-means variants, examining their computational
complexities and convergence properties

• An experimental framework for comparing the practical performance of different k-means
variants, with a focus on convergence speed and clustering quality

The remainder of this paper is organized as follows: Section 2 establishes the theoretical
foundations and formal definitions of k-means clustering. Section 3 proves that the k-means
clustering problem is NP-complete even for k=2, highlighting the fundamental computational
challenges in finding globally optimal solutions. Section 4 analyzes the structure of local optimal
solutions and establishes convergence properties of k-means algorithm, providing theoretical
guarantees for practical implementations. Section 5 presents a detailed analysis of various k-means
variants, examining their theoretical properties and computational complexities. Section 6 describes
our experimental methodology and presents comparative results and detailed analysis. Finally,
Section 7 concludes with a summary of our theoretical analysis.

2 Theoretical Framework

What is clustering? Clustering is a fundamental problem in unsupervised learning that aims to
partition data points into groups based on their similarity. Before delving into specific algorithms,
we first present a formal mathematical framework.

2.1 Problem Formulation

We first define a class of k-means-type clustering problems. Given a dataset X = {x1, . . . , xn} ⊂ Rd

and a distance function d : Rd ×Rd → R≥0, we seek:

• A partition C1, . . . , Ck where
⋃k

i=1 Ci = X and Ci ∩ Cj = ∅ for i ̸= j. This ensures each data
point belongs to exactly one cluster.

• Centers c1, . . . , ck that minimize the total distance based on function d. These centers represent
the ”prototypical” points of their respective clusters.

2.2 Objective Function

The objective function for k-means-type problems captures the total distortion within clusters:

G((X , d), (C1, . . . , Ck)) =
k

∑
i=1

∑
x∈Ci

d(x, ci) (1)
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This function measures the sum of distances between each point and its assigned cluster center.
The classical k-means algorithm emerges as a special case where d(x, y) = ∥x− y∥2, chosen for its
mathematical properties that enable efficient optimization.

2.3 Center Update Rule

For k-means-type problems, we define a center update rule ϕd that maps a cluster to its representa-
tive center:

ϕd : 2X → Rd (2)

Here, 2X denotes the power set of X . The specific form of ϕd depends on the problem structure
and distance function d. For example, in classical k-means with squared Euclidean distance, ϕd
computes the arithmetic mean.

2.4 Optimization Formulation

The clustering problem can be formulated as the following optimization problem:

Problem P: minimize
k

∑
i=1

n

∑
j=1

wijd(xj, ci)

subject to
k

∑
i=1

wij = 1, ∀j = 1, . . . , n

wij ∈ {0, 1}, ∀i, j

ci = ϕd({xj : wij = 1}), ∀i = 1, . . . , k

The binary variables wij encode cluster assignments, where wij = 1 indicates point xj belongs
to cluster i. The constraints ensure each point is assigned to exactly one cluster.

2.5 The Lloyd-type Algorithm

For general k-means-type problems, we extend Lloyd’s algorithm as Algorithm 1.

Having established the theoretical framework for k-means-type clustering problems, we now turn
our attention to the computational complexity of these problems. While the Lloyd-type algorithm
provides an intuitive approach to solving clustering problems, it is important to understand the
fundamental computational challenges involved. In particular, we will show that even for the
simplest case of k=2, finding the optimal clustering solution is computationally intractable.

3 Computational Complexity of k-means Clustering

The optimization formulation presented in the previous section raises a natural question: how
difficult is it to find an optimal solution to the k-means clustering problem? Despite the problem’s
simple geometric nature and the widespread use of heuristic algorithms like Lloyd’s method, the
following analysis reveals that finding a globally optimal solution is computationally challenging.
We prove that the k-means clustering problem is NP-complete even when restricted to k = 2 [15, 16].



A Survey on K-means Clustering Algorithms 4

Input: Dataset X , number of clusters k, distance function d, center update function ϕd
Output: Clusters C1, . . . , Ck and centers c1, . . . , ck
Initialize centers c1, . . . , ck randomly;
repeat

/* Assignment step - assigns each point to nearest center */

for i← 1 to n do
j∗ ← arg minj∈{1,...,k} d(xi, cj);
Assign xi to cluster Cj∗ ;

end
/* Update step - recomputes centers using ϕd */

for j← 1 to k do
cj ← ϕd(Cj);

end
until convergence criterion is met;

Algorithm 1: Lloyd-type Algorithm

The proof proceeds by reduction from a variant of Not-All-Equal 3SAT (NaeSat*, Defination 3.1),
which we know is NP-complete [14].

Definition 3.1 (NaeSat*). Input: A Boolean formula ϕ(x1, . . . , xn) in 3CNF where:

• Each clause contains exactly three literals

• Each pair of variables appears together in at most two clauses:

– Once as either {xi, xj} or {xi, xj}
– Once as either {xi, xj} or {xi, xj}

Output: true if there exists an assignment where each clause has exactly one or two true literals, false
otherwise.

We want to prove the following theorem.

Theorem 3.2. 2-means clustering is NP-complete.

To prove this theorem, we follow the standard approach for establishing NP-completeness.
First, we show that 2-means clustering belongs to NP by demonstrating that a solution can be
verified in polynomial time. Then, we prove hardness through a reduction from NaeSat*. This
reduction will map boolean formulas to clustering instances in such a way that satisfiable formulas
correspond exactly to clusterings with cost below a carefully chosen threshold.

3.1 Membership in NP

Lemma 3.3. k-means clustering is in NP.

Proof. Given a solution (C1, . . . , Ck), we can verify in polynomial time:

1. The partition is valid: each point appears in exactly one cluster
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2. The cost is optimal for the given partition by checking each centroid is at the right position

3. The total cost is below the specified threshold

The verification takes O(nk) time where n is the number of points.

3.2 Reduction Construction

Given an instance ϕ of NaeSat* with n variables and m clauses, we construct a 2-means clustering
instance that captures the satisfiability properties of ϕ. The construction proceeds as follows:

1. For each variable xi in ϕ, we create two corresponding points in our metric space: one
representing the positive literal xi and one representing the negative literal xi. This gives us
2n points in total.

2. We define a distance matrix D that encodes the logical structure of ϕ. For any two literals α
and β:

Dαβ =


0 if α and β are identical
1 + ∆ if α is the negation of β

1 + δ if α and β appear together in a clause
1 otherwise

where the parameters δ and ∆ satisfy:

• 0 < δ < ∆ < 1

• 4δm < ∆ ≤ 1− 2δn

• A concrete valid setting is δ = 1
5m+2n and ∆ = 5δm, we can also choose other settings.

3. We set our target clustering cost threshold to c(ϕ) = n− 1 + 2δm
n

3.3 Correctness of the Reduction

We prove the reduction is correct through two key lemmas that establish the equivalence between
NaeSat* solutions and low-cost clusterings.

Lemma 3.4 (Forward Direction). If ϕ has a satisfying assignment for NaeSat*, then there exists a 2-means
clustering with cost exactly c(ϕ).

Proof. Given a satisfying assignment for ϕ, we construct an optimal clustering as follows:

1. Let C1 contain all literals that are true in the satisfying assignment

2. Let C2 contain all literals that are false in the satisfying assignment

This clustering has several important properties:

• Each cluster contains exactly n points (one literal from each variable)

• By the NaeSat* property, each clause must have literals assigned both true and false
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• Therefore, each clause contributes exactly one pair of related literals (α ∼ β) to each
cluster

The total clustering cost can be calculated as:

cost =
1

2n ∑
i,i′∈C1

Dii′ +
1

2n ∑
i,i′∈C2

Dii′

= 2 · 1
n

(
(

(
n
2

)
−m) · 1 + m · (1 + δ)

)
= n− 1 +

2δm
n

= c(ϕ)

Lemma 3.5 (Backward Direction). If there exists a 2-means clustering with cost ≤ c(ϕ), then ϕ is
satisfiable.

Proof. We prove this through a sequence of structural properties:

1. First, we prove that no cluster can contain both a literal and its negation:

• Suppose C1 contains n′ points including a complementary pair

• The minimum possible cost would be:

1
n′
((

(
n′

2

)
− 1) · 1 + 1 · (1 + ∆)) +

1
2n− n′

(
2n− n′

2

)
· 1 ≥ n− 1 +

∆
2n

> c(ϕ)

• This contradicts our assumption about the clustering cost

2. This implies that each cluster must contain exactly n points, with exactly one literal from each
variable pair

3. The cost formula then simplifies to:

2
n

((
n
2

)
+ δ ∑

clauses
(1 if split, 3 otherwise)

)

4. For this to be ≤ c(ϕ), every clause must be ”split” between clusters

5. Therefore, assigning true to all literals in C1 and false to all literals in C2 gives a valid NaeSat*
solution



A Survey on K-means Clustering Algorithms 7

3.4 Geometric Realization of the Distance Matrix

The previous lemmas established that our construction yields a valid reduction from NaeSat* to
2-means clustering if we can represent the distances in Euclidean space. We now show this is
possible using theorems established by Schoenberg [40].

Theorem 3.6 (Geometric Realization). Given our distance matrix D(ϕ), there exist points {xα}α∈literals ⊂
R2n such that Dαβ = ∥xα − xβ∥2 for all literals α, β.

Proof. The proof proceeds in two steps:

1. First, we show that D(ϕ) satisfies Schoenberg’s criterion for embeddability into ℓ2
2

2. Then, we explain how to explicitly construct the embedding using classical multidimensional
scaling

Step 1: Verifying Schoenberg’s Criterion
By Schoenberg’s theorem [40], a symmetric matrix D can be realized as squared Euclidean

distances if and only if −HDH is positive semidefinite, where H = I − 1
N 11T is the centering

matrix.
We will show this by proving that vT HDHv ≤ 0 for all vectors v ∈ RN . Let u = Hv. Note that

u · 1 = 0 for any such u, because H1 = 0. Therefore, it suffices to show uTDu ≤ 0 for all vectors u
with u · 1 = 0.

For any such vector u, let u+ denote its first n coordinates and u− its last n coordinates. Then:

uTDu = ∑
α,β

Dαβuαuβ

= ∑
α,β

uαuβ(1− 1(α = β) + ∆ · 1(α = β) + δ · 1(α ∼ β))

= ∑
α,β

uαuβ −∑
α

u2
α + ∆ ∑

α

uαuα + δ ∑
α∼β

uαuβ

≤
(

∑
α

uα

)2

− ∥u∥2 + 2∆(u+ · u−) + δ ∑
α,β
|uα||uβ|

≤ −∥u∥2 + ∆(∥u+∥2 + ∥u−∥2) + δ

(
∑
α

|uα|
)2

≤ −(1− ∆)∥u∥2 + 2δ∥u∥2n ≤ 0

The last inequality follows from our choice of parameters where 2δn ≤ 1− ∆.
Step 2: Constructing the Embedding
Given that D satisfies Schoenberg’s criterion, we can explicitly construct the embedding points

{xα} as follows:

1. Form the matrix B = − 1
2 HDH

2. Compute the eigendecomposition B = UΛUT

3. The embedding points are given by the rows of UΛ1/2
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This construction is guaranteed to work because B is positive semidefinite, and the resulting
points xα ∈ R2n will satisfy ∥xα − xβ∥2 = Dαβ for all pairs of literals α, β.

This geometric realization completes our reduction by showing that the abstract distance matrix
D(ϕ) can be realized by actual points in Euclidean space, making our reduction valid for the
standard k-means clustering problem.

Having established the computational hardness of finding globally optimal solutions to the k-means
clustering problem, we now turn our attention to understanding the structure of partial optimal
solutions and local minima. This analysis is crucial because while finding global optima is NP-hard,
most practical algorithms (including Lloyd’s algorithm) aim to find high-quality local solutions.
We begin by introducing the reduced function formulation, which will allow us to analyze the
geometric and algorithmic properties of k-means clustering more deeply.

Specifically, we will:

1. Characterize the structure of partial optimal solutions using optimization theory

2. Establish convergence properties of the k-means algorithm

3. Analyze special cases where partial optimal solutions coincide with local minima

4 Local Optimality and Convergence Analysis

4.1 Reduced Function

To analyze the problem structure more deeply, we use reduced function (Definition 4.1) that
eliminates the center variables defined by Selim [43]:

Definition 4.1. The reduced function F(W) of Problem P is defined by:

F(W) = min
c1,...,ck∈Rd

k

∑
i=1

n

∑
j=1

wijd(xj, ci) (3)

where W = [wij] is a k× n matrix of assignment variables.

This leads to the reduced problem:

Problem RP: minimize F(W)

subject to
k

∑
i=1

wij = 1, ∀j = 1, . . . , n

wij ≥ 0, ∀i, j

To understand the properties of this reduced problem, we first analyze the structure of the
reduced function F(W) under different conditions on the distance function d.

Theorem 4.2. When d(x, y) is convex in y for fixed x, the following properties hold:

• F(W) is concave in W
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• For wij ∈ [0, 1], if d(x, y) is strictly convex in y, then optimal solutions satisfy wij ∈ {0, 1}

• If d(x, y) is concave in y, then optimal wij may be fractional

Proof. The concavity follows from:

F(γW1 + (1− γ)W2) = min
c ∑

i,j
(γw1

ij + (1− γ)w2
ij)d(xj, ci)

= min
c
{γ ∑

i,j
w1

ijd(xj, ci) + (1− γ)∑
i,j

w2
ijd(xj, ci)}

≥ γ min
c ∑

i,j
w1

ijd(xj, ci) + (1− γ)min
c ∑

i,j
w2

ijd(xj, ci)

= γF(W1) + (1− γ)F(W2)

The binary property follows from strict convexity of d, which ensures that any fractional solution
can be improved by moving to a vertex of the feasible region.

Lemma 4.3. For classical k-means with non-empty clusters and d(x, y) = ∥x− y∥2:

F(W) =
n

∑
j=1

k

∑
i=1

wij∥xj −
∑n

l=1 wilxl

∑n
l=1 wil

∥2 (4)

where ∑n
l=1 wil > 0 for all i.

While the reduced function provides a useful reformulation of our problem, to develop efficient
algorithms we need to understand the structure of optimal solutions. This leads us to consider
partial optimal solutions, which play a crucial role in understanding the convergence properties of
k-means-type algorithms.

4.2 Partial Optimal Solutions

Definition 4.4. A point (W∗, Z∗) is called a partial optimal solution if:

f (W∗, Z∗) ≤ f (W, Z∗) for all W ∈ S

f (W∗, Z∗) ≤ f (W∗, Z) for all Z ∈ Rnk

where S is the feasible set of cluster assignment matrices.

To find partial optimal solutions, we consider two subproblems:

• Problem P1: Given Ẑ, minimize f (W, Ẑ) subject to W ∈ S

• Problem P2: Given Ŵ, minimize f (Ŵ, Z) subject to Z ∈ Rnk

To better understand the structure of these partial optimal solutions, we can characterize them
using the Kuhn-Tucker optimality conditions from nonlinear programming theory.
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Theorem 4.5 (Equivalence of Partial Optimal Solutions and Kuhn-Tucker Points). Under differentia-
bility conditions, a point (W∗, Z∗) is a partial optimal solution if and only if it satisfies the Kuhn-Tucker
conditions:

i) ∇wj f (W, Z) + ΠtE ≥ 0 j = 1, . . . , m

ii) (∇wj f (W, Z) + ΠtE)wj = 0 j = 1, . . . , m

iii) Ewj = 1, wj ≥ 0 j = 1, . . . , m

iv) ∇zi f (W, Z) = 0 i = 1, . . . , k

where E is a vector of ones and Π is the vector of Lagrange multipliers.

Proof. (⇒) First, assume (W∗, Z∗) is a partial optimal solution.

1. Since W∗ minimizes f (W, Z∗) over W ∈ S, it must satisfy the KKT conditions for Problem P1:

• Stationarity: ∇wj f (W, Z∗) + ΠtE ≥ 0

• Complementary slackness: (∇wj f (W, Z∗) + ΠtE)wj = 0

• Primal feasibility: Ewj = 1, wj ≥ 0

2. Since Z∗ minimizes f (W∗, Z) over Z ∈ Rnk, we have:

• ∇zi f (W∗, Z∗) = 0 (unconstrained minimization)

(⇐) Now assume (W∗, Z∗) satisfies conditions i)-iv).

1. Conditions i)-iii) are the KKT conditions for Problem P1, implying W∗ minimizes f (W, Z∗)
over W ∈ S

2. Condition iv) implies Z∗ is a stationary point of f (W∗, Z), and since this is unconstrained
and f is convex in Z, Z∗ minimizes f (W∗, Z)

Therefore, (W∗, Z∗) satisfies both conditions of a partial optimal solution.

Theorem 4.6 (K-means Convergence). Algorithm converges to a partial optimal solution of Problem P in
a finite number of iterations.

Proof. Let’s prove by contradiction that the algorithm visits each extreme point of S at most once.
Assume there exist iterations r1 and r2 (r1 ̸= r2) where the algorithm visits the same extreme

point:
Wr1 = Wr2 (5)

Following the algorithm steps:

At iteration r1 : We solve P2 with W = Wr1 to get Zr1+1

At iteration r2 : We solve P2 with W = Wr2 to get Zr2+1

Since Wr1 = Wr2 , we have:

f (Wr1 , Zr1+1) = f (Wr2 , Zr1+1) (same W)

= f (Wr2 , Zr2+1) (from step ii)
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However, by the construction of the algorithm, we know that:

f (Wr1 , Zr1) > f (Wr1 , Zr1+1) > · · · > f (Wr2 , Zr2+1) (6)

This creates a contradiction because we cannot have:

f (Wr1 , Zr1+1) = f (Wr2 , Zr2+1) (7)

while also having a strictly decreasing sequence between these points. Therefore, the algorithm
cannot visit the same extreme point twice.

Since the feasible region has a finite number of extreme points and the algorithm never revisits
the same extreme point, it must terminate in a finite number of iterations. When the algorithm
terminates, the solution satisfies partial optimality conditions.

To further characterize local optimality, we need two results from optimization theory. For
brevity, we states two lemmas without proof. For more details, please refer to [31]

Lemma 4.7 (Directional Derivatives). Let f (W, Z) be defined for all W and for all Z ∈ V where:

(i) V is compact and

(ii) f and the partial derivatives ∂ f /∂wij are continuous.

Let F(W) = min{ f (W, Z) : Z ∈ V} and define

A(W∗) = {Z : Z minimizes f (W∗, Z), Z ∈ V}. (8)

The one-sided directional derivative of F at W∗ in direction d is given by:

DF(W∗; d) = lim
α→0+

F(W∗ + αd)− F(W∗)
α

(9)

Then DF(W∗; d) exists for any d at any point W∗ and is given by:

DF(W∗; d) = min{∇t
w f (W∗, Z) · d : Z ∈ A(W∗)} (10)

where ∇w f (W∗, Z) is the vector of partial derivatives ∂ f (W, Z)/∂wij evaluated at W = W∗.

Lemma 4.8 (Optimality Conditions). Consider Problem RP: min{F(W) : W ∈ S} where S is convex.
Let W∗ ∈ S. Then W∗ is a local minimum of RP if and only if the directional derivatives satisfy:

DF(W∗; d) ≥ 0 (11)

for each feasible direction d at W∗.

Using these lemmas, we can now establish a complete characterization of local optimality for
k-means clustering.

Theorem 4.9 (Local Optimality Characterization). For a partial optimal solution (W∗, Z∗) where W∗ is
an extreme point of the polyhedral set S and Z∗ ∈ A(W∗), W∗ is a local minimum of Problem RP if and
only if:

F(W∗) = f (W∗, Z∗) ≤ min{ f (W, Z) : W ∈ S for all Z ∈ A(W∗)} (12)

where A(W∗) = {Z : Z minimizes f (W∗, Z), Z ∈ V} and V is a compact set containing Z∗.
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Proof. Consider Problem RP and assume the inequality holds. For any Z ∈ A(W∗), by assumption:

f (W∗, Z∗) = f (W∗, Z) ≤ min{ f (W, Z) : W ∈ S}
This implies that for any feasible direction d at W∗:

∇w f (W∗, Z) · d ≥ 0

Since this holds for any Z ∈ A(W∗):

min{∇w f (W∗, Z) · d : Z ∈ A(W∗)} ≥ 0

By Lemma 4.7, the left-hand side equals DF(W∗; d), the directional derivative. Therefore, by
Lemma 4.8, W∗ is a local minimum of Problem RP.

The converse follows similarly by reversing these steps.

A particularly important special case occurs when the set A(W*) contains exactly one element.

Theorem 4.10 (Singleton Local Optimality). Let (W∗, Z∗) be a partial optimal solution of Problem P and
let A(W∗) given by equation (8) be singleton; then W∗ is a local minimum of Problem RP.

Proof. Since W∗ is a partial optimal solution, then by definition, f (W∗, Z∗) ≤ min{ f (W, Z∗) : W ∈
S}. But this is precisely the condition of local optimality of W∗ if A(W∗) is singleton, as shown in
Theorem 4.9. Hence the proof is complete.

Theorem 4.11 (Convergence under Quadratic Metrics). Consider Problem P where D(xj, ci) = (xj −
ci)

t(xj − ci). Then any partial optimal solution is a local minimum point.

Proof. Let (W∗, Z∗) be a partial optimal solution. For quadratic metrics:

c∗i =
∑n

j=1 w∗ijxj

∑n
j=1 w∗ij

This value is unique for each cluster i, therefore Ai(W∗i ) is singleton for all i. Consequently,
A(W∗) is singleton as well.

By Theorem 4.10, when A(W∗) is singleton, any partial optimal solution is automatically a local
minimum point of Problem RP. Therefore, under quadratic metrics, all partial optimal solutions are
local minima.

Finally, we can apply these results to analyze the special case of quadratic distance metrics,
which includes the classical k-means algorithm.

Corollary 4.12 (K-means Convergence). The K-means algorithm with quadratic metrics converges to a
local minimum in a finite number of iterations.

Proof. By Theorem 4.6, the K-means algorithm converges to a partial optimal solution in finite
iterations. By Theorem 4.11, this solution must be a local minimum when using quadratic metrics.

Having established the theoretical properties of the classical k-means algorithm, including its
convergence guarantees and local optimality conditions, we now explore how these foundations
can be extended and modified to address various practical challenges. While k-means is widely
used, its limitations – such as sensitivity to initialization, restricted use of Euclidean distance, and
the requirement for numeric data – have motivated numerous variants of the algorithm.
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5 Variants of K-Means

In this section, we summarize some of the well-known variants of K-Means, which include different
problem setups, different algorithm. We introduce their problem formulation, practical algorithms,
relation to K-Means and some theoretical results. Specifically, we introduce some of the most
well-established variants in K-Means with variations in the following aspects: (1) Representative
Elements and Distance Generating Function for the clusters (K-Medoids, K-Medians, K-Modes,
Mean Shift Clustering), (2) Feature Transformation (Fuzzy K-Means, Kernel K-Means, Weighted
K-Means) , (3) Initial Representative Elements Assignment (IK-Means), (4) Algorithm Paradigm
(Bisecting K-Means Clustering).

5.1 K-Medoids Clustering

K-Mediods Clustering [41] is a variant of K-Means Clustering. Similar to K-Means, it also aims to
find a set of {C1, C2, · · · , Ck} that minimizes a pre-defined loss function. However, the problem
formulation is different in the following two ways:

1. The representative points of each cluster {m1, m2, · · · , mk} are restricted to be one of the data
points in the dataset. i.e. {m1, m2, · · · , mk} ⊆ {x1, x2, · · · , xn}.

2. Instead of minimizing the SSE loss in K-Means, the loss function for K-Medoids is defined
using Absolute Error:

Gk-medoids((X , d), (C1, . . . , Ck)) =
k

∑
i=1

∑
x∈Ci

∥x−mi∥ (13)

where the representative element µi denotes the medoid of the cluster.

mi = min
m∈Ci

∑
x∈Ci

∥x−mi∥ (14)

Intuitively, as l2 norm squares each term’s difference compared to l1 norm, the model trained
on l1 norm will be more robust to outliers. Also, the property of all representative elements are
points within the given input set X makes it useful in scenarios where more ”natural” solutions are
desired [39].

Similar to K-Means, the K-Medoid clustering algorithms also follow the paradigm of iteratively
updating the representative points and the clusters until convergence. A Basic K-Medoid clustering
algorithm is provided in 2.

In the naive implementation of k-Medoids (Option 1 of Algorithm 2), after we select the initial
medoids, we need to compute the total cost of swapping the representative object m with xi for all
the non-representative objects xi. This is a O(n2) operation.

To address this issue, a modification of the k-Medoids algorithm, Partition Around Medoids
(PAM) is proposed in [1]. The algorithm first builds a dissimilarity matrix on the given dataset,
refered to in literature as BUILD operation. The second part of the algorithm, refered to as
SWAP operations, iteratively selectes a random non-representative point and calculating whether
swapping the representative object with it yields better loss function, as illustrated in Option 2 of
Algorithm 2.

Compared to k-Means Clustering, k-Medoids Clustering:
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Input: Dataset X = {x1, . . . , xn}, number of clusters K
Output: Clusters C1, . . . , CK and medoids m1, . . . , mK
Select K points as the initial representative objects medoids;
repeat

/* Assign each point to the cluster with the nearest medoid */

for i← 1 to n do
j∗ ← arg minj∈{1,...,K} ∥xi −mj∥;
Assign xi to cluster Cj∗ ;

end
/* Option 1: Iterate to find the best medoid of each cluster */

for i← 1 to K do
mi ← arg minx∈Ci ∑y∈Ci

∥x− y∥;
end
/* Option 2:Update medoids by testing replacements */

Randomly select a non-representative object xi;
Compute the total cost S of swapping the representative object m with xi;
if S < 0 then

Swap m with xi to form the new set of K representative objects;
end

until convergence;
Algorithm 2: K-Medoids Clustering

• Provides more natural solutions by restricting representative points on the input set X

• Are more robust to noise and outliers

However the computational complexity of k-Medoids is higher, restricting it’s application to larger
datasets. Classical works like Clustering LARge Application (CLARA) algorithm [26] extends the
idea of PAM to larger datasets through sampling methods.

5.2 K-Medians Clustering

K-Medians Clustering [24] selects the medians of the clusters, as opposed to the means in K-Means
Clustering. For each cluster Ci, the median med is defined as

medij = medianx∈Ci(xj) (15)

where medij is the j-th feature of the median point in the cluster Ci, and xj is the j-th feature of data
point x in the cluster Ci. The loss function for K-Medians is defined as:

k

∑
i=1

∑
x∈Ci

d

∑
j=1
|xj −medij| (16)

K-medians is more robust to outliers compared to K-means. One should not confuse K-Medians’
representative elements to be restricted on points in X . As the median is selected feature-wise, the
resulting representative element may not be a point in the given set of points. For instance, given
cluster (0, 0), (1,−1), (2, 1), the representative point is (1, 0), which is not an element in the cluster.
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Classical algorithm uses Lloyd-style iteration which iterates between an expectation step and a
maximization step, as shown in k-Means. In the expectation step, input data points are assigned to
their nearest median. In the maximization step, the medians are recomputed by using the median
in each single dimension.

Figure 1: An illustration of the constructed instance in Theorem 5.1’s proof [8]

Even in metric space, k-median is known to be NP-hard. For approximation algorithms, there
exists a O(1)-approximation algorithm that runs in Õ(kn) time [34] ,and it’s been proved that there
is no O(1)-approximation algorithm for metric k-median with o(kn) runtime [8].

Theorem 5.1. For any ρ ≥ 1, every approximation algorithm (including randomized algorithm) with
approximation ratio ρ for estimating the cost of metric k-median for k = n

2 requires time Ω(n2).

Proof. For simplicity, we denote the number of input points as 2n, and the number of clusters
k = 2n

2 = n. We then partition the 2n points into two sets: n points in P and n points in F. Between
these two set of points, we construct a perfect matchingM, and choose an edge e ∈ M at random.
We then define the distances in (P ∪ F, D) according to the following:

• ∀e∗ ∈ M\ {e}, D(e∗) = 1,

• For one instance, D(e) = 1, for the other, D(e) = Q = 2n(ρ− 1) + 3

• ∀(x, y) ̸∈ M, D(x, y) = n3ρ.

The metric space on (P∪ F, D) is well-defined. For arbitrarily large n, we know that the optimal
solution is the following clustering:

{C1, ...Ck=n} = {{x, y}|(x, y) ∈ E} (17)

If D(e) = Q, then the cost of the k-Median problem is 2nρ + 1, and if D(e) = 1, then the cost is 2n.
Hence, any ρ-factor approximation algorithm for the k-Median problem must distinguish between
these two problem instances. However, this requires an oracle to check if there exists an edge of
length Q, which is known to be Ω(n2), even if a randomized algorithm is used.
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5.3 K-Modes Clustering

Definition 5.2. Let A = {A1, A2, . . . , Ad} denote a set of m distinct categorical attributes, each associated
with a finite set Oj (1 ≤ j ≤ d) as its domain, where DOM(Aj) = Oj (≥ 2 discrete values).

A categorical datasetD = {x1, x2, . . . , xn} comprises n categorical data points, where each object xi ∈ D
(1 ≤ i ≤ n) is a tuple xi = (xi1, xi2, . . . , xid) ∈ O1 ×O2 × · · · × Od.

For categorical data, k-Means Clustering is not applicable as the l2 distance between categorical
data points is not well-defined. Intuitively, if we denote the categories as 0, 1, 2, the distance between
(0, 2) and (0, 1) should be the same, as they both represent two points of different categories. In
other words, the distance should be invariant to the order of the categories, which is not the case
for the l2 distance.

Definition 5.3. The l0-norm of a vector x = (x1, x2, . . . , xm), denoted by ∥x∥0, is defined as the number of
non-zero entries in x. Mathematically, it is expressed as:

∥x∥0 =
m

∑
i=1

1(xi ̸= 0),

where 1(·) is the indicator function, which equals 1 if the condition inside is true, and 0 otherwise. The
L0-norm is commonly used to measure the sparsity of a vector.

Instead, in K-Modes Clustering [11], we use l0 norm to define the distance generating function.
This implies that the difference between two data points x, y are defined by the number of features
that the two disagree with. A Basic K-modes algorithm is described in Algorithm 3.

Input: Dataset X = {x1, . . . , xn}, number of clusters K
Output: Clusters C1, . . . , CK and modes m1, . . . , mK
Select K initial modes;
repeat

/* Assign points to the cluster with the nearest mode using the matching

metric */

for i← 1 to n do
j∗ ← arg minj∈{1,...,K}matching distance(xi, mj);
Assign xi to cluster Cj∗ ;

end
/* Recompute the modes of the clusters */

for j← 1 to K do
Recompute the mode mj of cluster Cj;

end
until convergence;

Algorithm 3: K-Modes Clustering

The algorithm works by iteratively assigning data points to the nearest cluster mode, which is
the most common value within the cluster.
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5.4 Mean Shift Clustering

Mean Shift Clustering [12] is a popular non-parametric clustering method. Its objective is to
discover the modes (local maxima) in the data distribution by iteratively shifting data points
toward the direction of maximum density. This process is based on the Parzen window kernel
density estimation method and performs gradient ascent until convergence. The stationary points
of the estimated density represent the modes, which serve as the cluster centers.

Definition 5.4. Parzen window kernel density estimate:
Given N data points {xi}N

i=1 in a d-dimensional space Rd, the multivariate Parzen window kernel
density estimate f (x) is computed using a kernel function K(x) and window radius h as:

f (x) =
1

Nhd

N

∑
i=1

K
(

x− xi

h

)
, (18)

Definition 5.5. Mean Shift Vector
The mean shift vector mh(x), which points toward the direction of the maximum increase in density, is

calculated as:

mh(x) =
∑N

i=1 xi · g
(∥∥ x−xi

h

∥∥2
)

∑N
i=1 g

(∥∥ x−xi
h

∥∥2
) , (19)

where g(x) is the gradient of the kernel K(x).

The Mean Shift Clustering algorithm iteratively computes mh(x) for each data point x and
updates x until convergence to a stationary point. The algorithm is summarized in Algorithm 4.

Input: X = {x1, x2, . . . , xN}, kernel function K(x), window radius h
Output: Cluster centers corresponding to the modes of the data distribution
Step 1: Initialization. Select initial points from the dataset as the starting modes;
repeat

foreach point x ∈ X do
/* Step 2: Compute mean shift vector */

Compute the mean shift vector mh(x) as:

mh(x) =
∑N

i=1 xi ·g
(∥∥∥ x−xi

h

∥∥∥2
)

∑N
i=1 g

(∥∥∥ x−xi
h

∥∥∥2
)

/* Step 3: Update point location */

Update the point x as:
x ← mh(x).

end
until Modes converge;

Algorithm 4: Mean Shift Clustering

The Mean Shift Clustering Algorithm has broad applications in pattern recognition and com-
puter vision, for example image segmentation, object tracking, and feature space analysis. However,
its performance is sensitive to the choice of the kernel function and the bandwidth h.
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5.5 Fuzzy K-Means Clustering

Standard K-Means restrict each data points’ membership to only one cluster. However, for many
real world applications, the underlying structure contains overlapping clusters. Fuzzy K-Means
Clustering, or often referred to as Fuzzy C-Means clustering, relaxes the unitary-membership
restriction to confront this issue.

In fuzzy C-means clustering algorithm (FCM) [37] , the loss function for a clustering solution C
is given by:

Gfuzzy(C) =
K

∑
k=1

∑
xi∈Ck

wβ
xik∥xi − ck∥2 (20)

Here, wxik is the membership weight of point xi belonging to cluster Ck. This weight is used
during the clustering process.

The membership weight wxik is computed as:

wxik =
1

∑K
j=1

(
∥xi−ck∥
∥xi−cj∥

) 2
β−1

(21)

The cluster center ck is calculated as:

ck =
∑xi∈Ck

wβ
xikxi

∑xi∈Ck
wxik

(22)

Then, starting from a set of initial centroids and repeatedly applying formulas 21 and 22, a
computational algorithm has been proven to converge to a local optimum of criterion 20. The
algorithm is presented in Algorithm 5.

Although can be seen as a generalized version of K-Means, it still suffers some of the most
significant issues with K-Means, namely being sensitive to outliers and converges to local minimum.

Further works that extends this idea include: Rough C-means [33], Possibilistic C-means [29]
and Kernel FCM (KFCM) [18]. For instance, KFCM (Kernel Fuzzy C-Means) is an improved version
of the FCM algorithm, leveraging kernel methods to map data into a higher-dimensional feature
space. It’s key modifications include:

1. Kernel Mapping Each data point xi ∈ X is mapped into a higher-dimensional feature space
using a kernel function ϕ, where the kernel function is defined as:

K(xi, xj) = ϕ(xi)
⊤ϕ(xj) (23)

Here, K(xi, xj) represents the inner product in the higher-dimensional feature space.

2. Loss Function Accordingly, the loss function is modified to the following form:

J(U, C) =
K

∑
k=1

n

∑
i=1

uβ
ik ∥ϕ(xi)− ck∥2 (24)

where uik is the membership degree of data point xi to cluster Ck, β > 1 is the fuzziness
parameter, ck is the center of cluster Ck in the feature space.
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Input: Dataset X , number of clusters K, fuzziness parameter β, stopping criteria ϵ
Output: Clusters {C1, C2, . . . , CK} and cluster centers {c1, c2, . . . , cK}
Initialize: Randomly select initial cluster centers c1, c2, . . . , cK. Initialize membership
weights wxik for all xi ∈ X and Ck;

repeat
/* Step 1: Update membership weights */

foreach xi ∈ X and Ck do
wxik ← 1

∑K
j=1

(
∥xi−ck∥
∥xi−cj∥

) 2
β−1

end
/* Step 2: Update cluster centers */

foreach Ck do

ck ←
∑xi∈Ck

wβ
xikxi

∑xi∈Ck
wβ

xik

end
/* Step 3: Compute Loss Function */

Gfuzzy(C)← ∑K
k=1 ∑xi∈Ck

wβ
xik∥xi − ck∥2;

/* Step 4: Check convergence */

Stop if change in Gfuzzy(C) is less than ϵ;
until convergence or change in SSE < ϵ;

Algorithm 5: Fuzzy C-means clustering algorithm (FCM)

3. Membership Weights The membership values uik are updated using the kernel distances:

uik =
1

∑K
j=1

(
K(xi ,xi)−2 ∑xh∈Ck

uβ
hkK(xi ,xh)+∑xg ,xh∈Ck

uβ
gkuβ

hkK(xg,xh)

K(xi ,xi)−2 ∑xh∈Cj
uβ

hjK(xi ,xh)+∑xg ,xh∈Cj
uβ

gju
β
hjK(xg,xh)

) 1
β−1

(25)

4. Cluster Centers The cluster centers ck in the feature space are calculated as:

ck =
∑n

i=1 uβ
ikϕ(xi)

∑n
i=1 uβ

ik

(26)

5. Stopping Criterion The algorithm stops when the change in the objective function J(U, C) or
the cluster centers ck falls below a predefined threshold ϵ.

The algorithm can be found in Algorithm 6.
KFCM is an extension of FCM by using the Kernel trick to map low-dimensional and possibly

non-linearly seperable data to a latent space where linear seperation is possible. It is particularly
effective in scenarios with non-linearly separable clusters, such as those found in pattern recognition
or biomedical applications. As we will see later in this section, KFCM is actually an intergration of
Fuzzy K-Means Clustering and Kernel K-Means Clustering.
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Input: Dataset X = {x1, x2, . . . , xn}, number of clusters K, kernel function K(x, y),
fuzziness parameter β, stopping criteria ϵ

Output: Clusters C1, C2, . . . , CK and cluster centers c1, c2, . . . , cK in the feature space
Step 1: Kernel Mapping: Map each data point xi into the feature space using kernel
function K(xi, xj);

Step 2: Initialization: Assign initial values for membership degrees uik and initialize cluster
centers ck;

repeat
/* Step 3: Update Membership Weights */

foreach xi ∈ X and Ck do
Update uik using the kernel-based distance formula:
uik =

1

∑K
j=1

(
distk(xi)
distj(xi)

) 1
β−1

end
/* Step 4: Update Cluster Centers */

foreach Ck do
Update cluster center ck using:

ck =
∑n

i=1 uβ
ikϕ(xi)

∑n
i=1 uβ

ik

end
until convergence (change in J(U, C) < ϵ);

Algorithm 6: Kernel Fuzzy C-Means (KFCM) Algorithm

5.6 Kernel K-Means Clustering

Kernel K-Means [38] is an extension of the standard K-Means algorithm that works by projecting
the data into a high-dimensional kernel space, where clusters can be more easily separated. This
projection is achieved using kernel functions, however as we only care about distances between
two points in the kernel space, an explicit representation of the projection function ϕ is not needed.
Common kernel functions include polynomial, Gaussian (RBF), and sigmoid kernels, as shown in
Table 1. We present Theorem 5.6 without proof.

Theorem 5.6. (Mercer’s Theorem) Let K(x, y) be a continuous, symmetric, and positive semi-definite kernel
function defined on a compact domain X ×X . Then, K(x, y) can be expressed as:

K(x, y) =
∞

∑
i=1

λiϕi(x)ϕi(y), (27)

where:

• {ϕi(x)} is an orthonormal set of eigenfunctions in L2(X ),

• {λi} are the non-negative eigenvalues associated with the eigenfunctions.

The objective function for Kernel K-Means minimizes the sum of squared errors (SSE) in the
high-dimensional feature space:

Gkernel(C) =
K

∑
k=1

∑
xi∈Ck

∥ϕ(xi)− ck∥2, (28)
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where ck is the centroid of cluster Ck in the kernel space.

Kernel Type Kernel Function
Polynomial Kernel K(a, b) = (a · b + c)d

Gaussian Kernel (RBF) K(a, b) = exp
(
− ∥a−b∥2

2σ2

)
Sigmoid Kernel K(a, b) = tanh(c(a · b) + θ)

Table 1: Kernel Functions

The steps for Kernel K-Means clustering are summarized in Algorithm 7.

Input: Dataset X = {x1, x2, . . . , xn}, number of clusters K, kernel function K(x, y), stopping
criteria ϵ

Output: Clusters C1, C2, . . . , CK
Step 1: Initialize. Randomly assign each point xi to one of the K clusters;
repeat

/* Step 2: Compute kernel distances */

For each cluster Ck, compute the distance of each point xi to the centroid in the kernel
space:

∥ϕ(xi)− ck∥2 = Kxixi −
2
|Ck| ∑

xj∈Ck

Kxixj +
1
|Ck|2 ∑

xj,xl∈Ck

Kxjxl .

/* Step 3: Update cluster assignments */

Assign each point xi to the cluster with the nearest centroid in the kernel space;
/* Step 4: Update centroids */

Recompute cluster centroids ck using the kernel function:

ck =
∑xi∈Ck

ϕ(xi)

|Ck|
.

until Convergence or change in Gkernel(C) < ϵ;
Algorithm 7: Kernel K-Means Clustering

The primary difference between standard K-Means and Kernel K-Means lies in the use of
the kernel function ϕ(x), resulting in clustering in a high-dimensional kernel space. While this
enables the clustering of non-linearly separable data, the computational complexity increases
significantly, as the kernel matrix must be computed and stored. As a popular extensions of this
algorithm, Weighted Kernel K-Means[17] incorporates weights into the clustering process, yielding
nice theoretical properties and empirical results.

In Weighted Kernel K-Means , we assign a weight w(x) for each data point x, allowing the
algorithm to account for the varying importance of data points in the clustering process. Using
a kernel function K(xi, xj), which maps points into a high-dimensional feature space ϕ(x), the
objective of Weighted Kernel K-Means is to minimize the following distortion function:

GWeighted Kernel({Cj}k
j=1) =

k

∑
j=1

∑
x∈Cj

w(x)∥ϕ(x)− cj∥2, (29)
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where Cj represents the j-th cluster, and cj is the weighted mean of the j-th cluster in the
kernel-induced feature space, defined as:

cj =
∑x∈Cj

w(x)ϕ(x)

∑x∈Cj
w(x)

. (30)

Definition 5.7. (Distortion). We define the distortion of a cluster Cj as

d(Cj) = ∑
x∈Cj

w(x)∥ϕ(x)− cj∥2 (31)

The mean cj is chosen such that it minimizes the intra-cluster distortion, making it the optimal
cluster representative. Specifically,

cj = arg min
z ∑

x∈Cj

w(x)∥ϕ(x)− z∥2. (32)

To compute the weighted distance between a point x and the cluster mean cj, we expand the
squared Euclidean distance in the kernel space as:

∥ϕ(a)− cj∥2 = K(a, a)−
2 ∑b∈Cj

w(b)K(a, b)

∑b∈Cj
w(b)

+
∑b,c∈Cj

w(b)w(c)K(b, c)(
∑b∈Cj

w(b)
)2 , (33)

The first term K(a, a) is a constant for each point a and does not affect the cluster assignment,
leaving only the second and third terms to be computed for clustering. The Weighted Kernel
K-Means algorithm is described in Algorithm 8.

Input: Kernel matrix K, number of clusters k, weights w(x) for each point
Output: Clusters C1, . . . , Ck

Step 1: Initialization. Randomly assign initial clusters C(0)
1 , . . . , C(0)

k ;
Step 2: Iterative optimization. Set t = 0;
repeat

foreach point x ∈ X do
Assign x to the nearest cluster:
j∗(a) = arg minj ∥ϕ(a)− cj∥2, using Equation 33.

end

Update clusters: C(t+1)
j = {a : j∗(a) = j}.

Update t = t + 1;
until Convergence;
Step 3: Return C1, . . . , Ck;

Algorithm 8: Weighted Kernel K-Means

The computational cost of the algorithm is dominated by the calculation of weighted distances.
The second term in the weighted distance computation requires O(n) operations per data point and
is computed once per iteration. The third term is cluster-dependent and requires O(n2) operations
per iteration, as it involves summing over all points within each cluster. The overall time complexity
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is O(n2τ), where τ denotes the total number of iterations. Initial computation of the kernel matrix
K adds an additional cost of O(n2m), where m is the dimensionality of the original data points.

Theorem 5.8. (Weighted Kernel K-means is equivalent to trace maximization)
Given Kernel Matrix K, weight matrix W, the objective of Weighted Kernel K-means Clustering algorithm

can be expressed as arg maxY∈Rn×k trace(YTW1/2KW1/2Y).

Proof. For a cluster Cj, denote the sum of the weights w of the points in Cj to be sj; in other words,
sj = ∑x∈Cj

w(x). Then, let W ∈ Rn×n be the diagonal matrix of the w weights for each data point,

and Wj ∈ R|Cj|×|Cj| denotes the diagonal matrix of w weights with restriction of the data points are
in Cj. Then we can rewrite the representative element cj as

cj = Φj
Wje

sj
, (34)

where Φj is the diagonal matrix of points associated with cluster Cj (after the ϕ mapping), i.e.,
Φ = diag[ϕ(x1), ϕ(x2), . . . , ϕ(xn)], and e is the vector of all ones of size |Cj|.

We can rewrite the distortion of cluster Cj to be:

d(Cj) = ∑
x∈Cj

w(x)∥ϕ(x)− cj∥2 (35)

= ∑
x∈Cj

w(x)
∥∥∥∥ϕ(x)−Φj

Wje
sj

∥∥∥∥2

(36)

=

∥∥∥∥∥(Φj −Φj
WjeeT

sj
)W1/2

j

∥∥∥∥∥
2

F

(37)

=

∥∥∥∥∥ΦjW1/2
j

(
I −

W1/2
j eeTW1/2

j

sj

)∥∥∥∥∥
2

F

. (38)

As trace(AAT) = trace(AT A) = ∥A∥2
F, and I −

W1/2
j eeTW1/2

j
sj

= P is an orthogonal projection matrix,

(because sj = eTWje, therefore P2 = P ), we get that

d(Cj) = trace
(

W1/2
j ΦT

j ΦjW1/2
j

)
−

eTW1/2
j√sj

ΦT
j Φj

W1/2
j e
√sj

. (39)

Rearranging the order of the data points, we can represent the full matrix of points as Φ =
diag[Φ1, Φ2, . . . , Φk], then we have that

GWeighted Kernel({Cj}k
j=1) = trace(W1/2ΦTΦW1/2)− trace(YTW1/2ΦTΦW1/2Y) (40)

= trace(ΦWΦT)− trace(YTW1/2ΦTΦW1/2Y) (41)

where
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Y =



W1/2
1 e√

s1
W1/2

2 e√
s2

. . .
W1/2

k e√
sk

 . (42)

Y ∈ Rn×k is an orthonormal matrix, i.e. YTY = I.
Since trace(ΦWΦT) is a constant, minimizing the loss function, as expressed in Equation

41 is equivalent maximizing trace(YTW1/2ΦTΦW1/2Y). As the kernel matrix of the data points
K = ΦTΦ, we can rewrite this expression as

arg max
Y∈Rn×k

trace(YTW1/2KW1/2Y). (43)

For the relaxed version of this problem, i.e. we allow Y to be an arbitrary orthonormal matrix,
we can obtain an optimal Y by taking the top k eigenvectors of W1/2KW1/2. This is a standard
algebra result, and the detailed proof is omitted.

As it is a well-celebrated result that Spectral Graph Clustering [7] is also equivalent to trace
maximization [46], therefore this theorem establishes the theoretical connection between weighted
kernel k-means and spectral graph clustering.

5.7 Weighted K-Means Clustering

Weighted K-Means (WK-Means) [22] is an extension of the standard K-Means algorithm that intro-
duces a feature weighting mechanism to account for the varying importance of features. Through
iteratively learns weights for different features, WK-Means improves clustering performance,
especially in datasets where certain features are more informative than others. A user-defined
parameter β controls the sensitivity of the algorithm to feature weights.

In WK-Means algorithm, the distance between a data point xi and a cluster centroid ck is defined
using a weighted Euclidean distance as:

d(xi, ck) =
M

∑
v=1

wβ
v∥xiv − ckv∥2. (44)

At each iteration, WK-Means first assigns data points to the nearest cluster based on this
weighted distance and updating the cluster centroids. Once the centroids are updated, the feature
weights wv are recalculated using Equation 45.

wv =
1

∑M
u=1

(
Dv
Du

) 1
β−1

, (45)

where Dv is the sum of within-cluster variances for feature v, defined as:

Dv =
K

∑
k=1

∑
xi∈Ck

(xiv − ckv)
2. (46)
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The weight update ensures that the weights wv are normalized such that:

M

∑
v=1

wv = 1. (47)

In other words, the WK-Means algorithm starts by initializing random centroids and assigning
equal weights to all features. During each iteration, the algorithm alternates between assigning
data points to clusters based on weighted distances and updating the centroids and feature weights.
The full algorithm is shown in Algorithm 9.

Input: Dataset X with M features, number of clusters K, user-defined parameter β,
stopping criteria

Output: Clusters C1, C2, . . . , CK, feature weights wv, and centroids ck
Step 1: Initialization. Choose K random centroids and initialize M feature weights such

that they sum to 1;
repeat

/* Step 2: Assign points to clusters */

Assign each data point xi to the closest centroid ck based on d(xi, ck);
/* Step 3: Update centroids */

Recompute the centroids ck for each cluster;
/* Step 4: Update feature weights */

Update the feature weights using wv;
until Convergence criterion is met;

Algorithm 9: Weighted K-Means Clustering (WK-Means)

By incorporating feature importance, WK-Means empirically achieves better clustering results
compared to standard K-Means, especially for datasets with heterogeneous feature importance.
However, the computational cost of WK-Means is higher than traditional K-Means due to the
additional weight learning step.

5.8 Intelligent K-Means Clustering

Intelligent K-Means (IK-Means) [10] is a clustering method that follows the principle: the farther a
point is from the centroid, the more we care about it. Unlike traditional K-Means, IK-Means introduces
a deterministic way of selecting initial centroids by considering points that are farthest from the
existing centroid, enabling better clustering for datasets with wide scatter. This method leverages
the ideas of principal component analysis (PCA) to identify points with maximum data scatter and
uses them as potential cluster centroids. These centroids often represent anomalous patterns in the
data, and the clusters derived from them are referred to as anomalous pattern clusters.

The first step of IK-Means involves calculating the centroid for the entire dataset, referred to as
the center of gravity cg.

cg =
1
n

n

∑
i=1

xi, (48)

Once cg is determined, the algorithm identifies the point c farthest from cg:
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c = arg max
xi∈X
∥xi − cg∥2. (49)

This point c becomes a candidate for an anomalous cluster centroid. The algorithm then creates
a cluster Siter by assigning all points xi to Siter if they are closer to c than to cg. Namely:

Siter = {xi ∈ X | d(xi, c) < d(xi, cg)}, (50)

where d(xi, c) denotes the distance between xi and c. Once the cluster Siter is formed, the
centroid of this cluster, sg, is updated as the mean of the points in Siter:

sg =
1
|Siter| ∑

xi∈Siter

xi. (51)

The algorithm iteratives between these steps, until one of the stopping criteria is met. The steps
of IK-Means are summarized in Algorithm 10.

Input: Dataset X
Output: Clusters C1, C2, . . . , CK and centroids c1, c2, . . . , cK
Step 1: Initialize. cg = 1

n ∑n
i=1 xi.

repeat
/* Step 2: Select new centroid */

c = arg maxxi∈X ∥xi − cg∥2.
/* Step 3: Cluster assignment */

Siter = {xi ∈ X | d(xi, c) < d(xi, cg)}.
/* Step 4: Update centroid */

sg = 1
|Siter| ∑xi∈Siter

xi. Set cg = sg.
/* Step 5: Prune small clusters */

Discard clusters smaller than a pre-specified threshold.
until Stopping criterion is met;

Algorithm 10: Intelligent K-Means (IK-Means) Clustering

Unlike traditional K-Means, which is non-deterministic due to random initialization, IK-Means
is a deterministic algorithm. It is particularly effective in scenarios where clusters are spread widely
across the dataset.

5.9 Bisecting K-Means Clustering

Bisecting K-means clustering [44] builds a binary tree and iteratively splits the leaf nodes C into
two child nodes C1, C2 by running 2-means. The algorithm for Bisecting K-means clustering is
given in Algorithm 11.

In line 2, the parent cluster to be split is initialized. Then, the algorithn runs a 2-means clustering
algorithm for I times. The resulting partition C1, C2 will be used to split the current node and the
larger among the split clusters is made as the new parent for further splitting.

This algorithm intergrates divisive hierarchical clustering method with K-Means. However,
Bisecting K-means has much higher computation complexity compared to standard K-Means.
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Input: Dataset X , desired number of clusters K, maximum iterations I
Output: Clusters C1, C2, . . . , CK
Step 1: Initialize. Start with the entire dataset as a single cluster C;
repeat

/* Step 2: Select cluster to split */

Choose the parent cluster C to be split;
/* Step 3: Bisect the cluster */

repeat
Randomly initialize two centroids within C;
Assign points in C to the nearest centroid;
Recompute centroids and evaluate inter-cluster dissimilarity;

until I iterations or convergence;
Split C into two subclusters C1 and C2;
/* Step 4: Update parent cluster */

Choose the larger subcluster (if applicable) as the next parent cluster;
until The number of clusters equals K;

Algorithm 11: Bisecting K-Means Clustering

6 Experiments

6.1 Experimental Setup

6.1.1 Datasets

We conducted extensive experiments on four well-known benchmark datasets from the UCI
Machine Learning Repository [28]:

• Breast Cancer Wisconsin [45]: A binary classification dataset with n = 569 samples and
d = 30 features

• Iris [20]: A dataset containing n = 150 samples with d = 4 features categorized into three
classes

• Wine [2]: Consists of n = 178 samples with d = 13 features divided into three classes

• Digits (0-4) [5]: A subset of the handwritten digits dataset containing the first five digits, with
d = 64 features

6.1.2 Algorithms

We implemented and compared ten variants of K-means clustering we discussed earlier:

• Standard K-means [32]: The classical K-means algorithm with Euclidean distance

• K-medoids [41]: A more robust variant using actual data points as centroids

• K-medians [24]: Uses Manhattan distance and median centers

• K-modes [11]: Adapted for handling continuous data through discretization
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• Mean Shift [12]: A density-based approach with adaptive bandwidth

• Fuzzy K-means [37]: Allows soft cluster assignments

• Kernel K-means [38]: Incorporates non-linear relationships using RBF kernel

• Weighted K-means [22]: Assigns feature importance based on variance

• Intelligent K-means [10]: Uses strategic initialization of centroids

• Bisecting K-means [44]: Implements hierarchical divisive clustering

6.1.3 Data Preprocessing

To ensure reliable and consistent clustering results, we implemented a comprehensive preprocessing
pipeline:

Outlier Treatment We employed the Interquartile Range (IQR) method [9] to handle outliers:

IQR = Q3 −Q1

Lower Bound = Q1 − 1.5× IQR
Upper Bound = Q3 + 1.5× IQR

where Q1 and Q3 represent the first and third quartiles respectively. Values outside these bounds
were clipped to the respective boundaries.

Feature Standardization All features were standardized using Standard Scaler [4] to ensure equal
feature contribution:

x′i =
xi − µ

σ

where µ is the mean and σ is the standard deviation of the feature.

6.1.4 Evaluation Metrics

To comprehensively evaluate the clustering performance, we employed the following metrics
[3, 35, 25]:

Clustering Accuracy This metric quantifies the agreement between predicted cluster labels and
true class labels:

Accuracy =
Correctly identified class

Total number of class
× 100

The accuracy is computed after finding the optimal one-to-one mapping between predicted clusters
and true classes using the Hungarian algorithm [36].



A Survey on K-means Clustering Algorithms 29

Adjusted Rand Index (ARI) The ARI [23] measures the similarity between two clustering par-
titions. For a dataset S with α elements divided into two partitions Y = {Y1, Y2, . . . , Yb} and
X = {X1, X2, . . . , Xc}, the ARI is calculated as:

ARI =
∑ij (

aij
2 )− [∑i (

ri
2)∑j (

sj
2)]/(

α
2)

1
2 [∑i (

ri
2) + ∑j (

sj
2)]− [∑i (

ri
2)∑j (

sj
2)]/(

α
2)

where:

• aij is the number of elements in common between partitions Xi and Yj

• ri is the sum of the i-th row

• sj is the sum of the j-th column

The ARI score ranges from 0 (random clustering) to 1 (perfect clustering agreement).

6.1.5 Experimental Procedure

The experiments were conducted following this protocol:

1. For each dataset, we generated multiple subsets of varying sizes: {10%, 25%, 50%, 75%, 100%}
of the original data

2. Each algorithm was run with the true number of clusters (k) known from the ground truth

3. For stability assessment, each experiment was conducted with fixed random seed (42)

4. Performance metrics were collected across different data sizes to analyze scalability

5. Results were visualized using PCA-reduced 2D projections and performance heat maps

6.2 Experiments Results and Analysis

For comprehensive visualization of our experimental results, we present additional plots in Ap-
pendix A.1, A.2 and A.3, including performance scaling, runtime analysis and clustering visualiza-
tions across different datasets. The main results and analysis are discussed in detail in the following
sections.

6.2.1 Performance Analysis Across Datasets

As illustrated in Figure 2, our experimental evaluation on four standard datasets—Breast Cancer,
Iris, Wine, and Digits—highlights several notable trends in clustering performance. On structured
datasets like Wine and Breast Cancer, most algorithms demonstrated strong accuracy, with values
exceeding 0.85 in most cases. KMedians and KMedoids consistently delivered stable results across
all datasets. Among these, the Wine dataset emerged as the most conducive to clustering, with
Fuzzy K-means achieving an accuracy of 0.967, closely followed by KMedians at 0.965.

In contrast, the Digits dataset posed significant challenges, with accuracy rates ranging widely
from 0.222 to 0.797. Certain algorithms, such as IKMeans (0.228), Fuzzy K-means (0.402), and
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Figure 2: Performances across four datasets (Breast Cancer, Iris, Wine, and Digits)

MeanShift (0.222), exhibited notably poor performance. This decline in accuracy on the high-
dimensional image dataset likely stems from the inherent complexity of handwritten digit variations
and the sensitivity of these algorithms to high-dimensional feature spaces. These findings suggest
that preprocessing techniques like dimensionality reduction could be instrumental in improving
clustering performance on such complex datasets.

6.2.2 Analysis of Performance Scaling with Dataset Size

Figure 3 illustrates how different clustering algorithms scale with increasing dataset size on the
Breast Cancer dataset (results for other datasets are provided in Appendix A.1). Several key
patterns emerge from this analysis:

First, traditional K-means variants (KMeans, KMedians, KMedoids) demonstrate remarkable
stability across different dataset sizes, maintaining consistently high performance (accuracy > 0.90)
even as the dataset grows. This stability suggests these algorithms are well-suited for real-world
applications where data volume may vary.

Second, while algorithms show considerable performance variation at smaller dataset sizes
(100-200 samples), their performance tends to stabilize as the dataset size increases beyond 300
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Figure 3: Accuracy and ARI comparison of Breast Cancer Datasets different sizes

samples. This is particularly evident in the ARI scores, where the performance gap between
algorithms narrows at larger dataset sizes.

However, not all algorithms exhibit such stability. MeanShift, for instance, shows significant
performance degradation as the dataset size increases, with its accuracy dropping from 0.90 at
around 200 samples to below 0.70 at around 400 samples. This suggests that certain algorithms
may require careful parameter tuning or may be better suited for specific dataset size ranges.

Notably, the correlation between accuracy and ARI scores remains consistent across dataset
sizes, though ARI scores are generally lower. This consistent gap between accuracy and ARI
(approximately 0.2-0.3) indicates that while algorithms may achieve high accuracy, their cluster
assignments might not fully capture the underlying data structure.

The remaining three datasets show similar patterns but with dataset-specific variations (see
Appendix A.1). These results highlight the importance of considering dataset size when selecting
clustering algorithms for practical applications.

6.2.3 Runtime Analysis with Dataset Size

The runtime analysis reveals significant differences in computational efficiency across algorithms
(Figure 4). From the results on the Digits dataset (additional datasets shown in Appendix A.2), we
observe three distinct scaling patterns:
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Figure 4: Runtime scaling with dataset size on Digits dataset.

First, most K-means variants demonstrate moderate scaling with dataset size, maintaining
relatively stable performance around or less than 10−1 seconds even as the dataset grows. This
efficiency makes them practical choices for many real-world applications.

Second, more sophisticated algorithms show notably different scaling behaviors. MeanShift
and KModes exhibit substantially higher computational costs, with runtimes approaching and
exceeding 1 second for larger datasets. This significant increase in runtime suggests careful
consideration is needed when applying these algorithms to larger datasets.

Notably, while some algorithms show consistent scaling patterns, others exhibit more erratic
behavior, particularly at transition points in dataset size. This variability highlights the importance
of testing algorithms across a range of dataset sizes when computational efficiency is a concern.

6.3 Recommendations and Future Directions

Based on our comprehensive experimental analysis, we can provide several key recommendations
for algorithm selection and usage:

For general-purpose clustering tasks, KMedians or KMedoids emerge as robust choices, demon-
strating both consistent performance across different data types and efficient runtime scaling.
These algorithms maintain high accuracy (> 0.90) while keeping computational costs manage-
able (10−2 ∼ 10−1 seconds for 1000 examples), making them particularly suitable for real-world
applications with varying dataset sizes.

When working with well-structured datasets with clear cluster boundaries, Fuzzy K-means
and Kernel K-means can provide superior accuracy (up to 0.967 on the Wine dataset), though at
the cost of increased computational complexity. These algorithms are best suited for applications
where accuracy is prioritized over computational efficiency.

For complex, high-dimensional datasets like Digits, our analysis reveals significant challenges
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that require careful consideration, like the substantial performance variation (0.222 to 0.797) sug-
gests the need for preprocessing steps such as dimensionality reduction and the disparity between
accuracy and ARI scores indicates the need for more robust evaluation metrics.

6.3.1 Future Directions

Future research could focus on extending the analysis to a wider variety of datasets with diverse
characteristics to enhance generalizability. It would also be valuable to investigate the impact of
different preprocessing techniques, particularly for high-dimensional data, as well as to develop
hybrid approaches that balance computational efficiency and clustering accuracy. Additionally,
exploring adaptive parameter tuning strategies could improve the performance of size-sensitive
algorithms. Finally, further examination of factors such as initialization and their influence on
clustering outcomes could provide deeper insights into optimizing these methods [39].

The relationship between dataset characteristics and algorithm performance suggests that no
single algorithm is universally superior. Instead, algorithm selection should be guided by specific
application requirements, considering both performance metrics and computational constraints.

7 Conclusion

This study presents a systematic investigation of k-means clustering and its variants, offering
a comprehensive analysis of their algorithmic properties and practical performance. Through
theoretical analysis, we have elucidated the computational complexity and convergence properties
of these algorithms, providing a mathematical general framework for understanding their behavior.
Our experimental evaluations across diverse datasets validate these theoretical findings while
practical insights into their strengths and limitations.
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[14] Andreas Darmann and Janosch Döcker. On simplified np-complete variants of not-all-equal
3-sat and 3-sat. arXiv preprint arXiv: 1908.04198, 2019.

[15] Sanjoy Dasgupta. The hardness of k-means clustering. 2008.

[16] Harshada S. Deshmukh and P. L. Ramteke. Comparing the techniques of cluster analysis for
big data. 2016.

[17] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means, spectral clustering and
normalized cuts. KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 551-556, 07 2004.

[18] Zhong dong Wu, Wei xin Xie, and Jian ping Yu. Fuzzy c-means clustering algorithm based on
kernel method. In Proceedings Fifth International Conference on Computational Intelligence and
Multimedia Applications. ICCIMA 2003, pages 49–54, 2003.

[19] Vladimir Estivill-Castro. Why so many clustering algorithms: a position paper. ACM SIGKDD
explorations newsletter, 4(1):65–75, 2002.

[20] R. A. Fisher. Iris. UCI Machine Learning Repository, 1936. DOI:
https://doi.org/10.24432/C56C76.

[21] Kurt Hornik, Ingo Feinerer, Martin Kober, and Christian Buchta. Spherical k-means clustering.
Journal of Statistical Software, 50:1–22, 09 2012.

[22] J.Z. Huang, M.K. Ng, Hongqiang Rong, and Zichen Li. Automated variable weighting
in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence,
27(5):657–668, 2005.



A Survey on K-means Clustering Algorithms 35

[23] Lawrence J. Hubert and Phipps Arabie. Comparing partitions. Journal of Classification, 2:193–
218, 1985.

[24] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1988.

[25] Anil K Jain, M Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM
computing surveys (CSUR), 31(3):264–323, 1999.

[26] Leonard Kaufman and Peter Rousseeuw. Finding Groups in Data: An Introduction To Cluster
Analysis. 01 1990.

[27] Leonard Kaufman and Peter J Rousseeuw. Finding groups in data: an introduction to cluster
analysis. John Wiley & Sons, 2009.

[28] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The uci machine learning repository,
https://archive.ics.uci.edu, 2025. Accessed 2025-01-07.

[29] R. Krishnapuram and J.M. Keller. The possibilistic c-means algorithm: insights and recom-
mendations. IEEE Transactions on Fuzzy Systems, 4(3):385–393, 1996.

[30] Yugal Kumar and Gadadhar Sahoo. A two-step artificial bee colony algorithm for clustering.
Neural Computing and Applications, 28:537–551, 2017.

[31] Leon S. Lasdon and Daniel Tabak. Optimization theory of large systems. IEEE Transactions on
Systems, Man, and Cybernetics, 1:300–301, 1970.

[32] J. MacQueen. Some methods for classification and analysis of multivariate observations. Proc.
5th Berkeley Symp. Math. Stat. Probab., Univ. Calif. 1965/66, 1, 281-297 (1967)., 1967.

[33] Pradipta Maji and Sankar Pal. Rough set based generalized fuzzy c -means algorithm and
quantitative indices. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a
publication of the IEEE Systems, Man, and Cybernetics Society, 37:1529–40, 12 2007.

[34] Ramgopal Mettu and Greg Plaxton. Optimal time bounds for approximate clustering. arXiv
preprint arXiv: 1301.0587, 2012.

[35] Mehryar Mohri. Foundations of machine learning, 2018.

[36] James Munkres. Algorithms for the assignment and transportation problems. Journal of the
society for industrial and applied mathematics, 5(1):32–38, 1957.

[37] Janmenjoy Nayak, Bighnaraj Naik, and Prof. Dr. H. Behera. Fuzzy C-Means (FCM) Clustering
Algorithm: A Decade Review from 2000 to 2014, volume 32, pages 133–149. 01 2015.

[38] Debolina Paul, Saptarshi Chakraborty, Swagatam Das, and Jason Xu. Kernel k-means, by all
means: Algorithms and strong consistency. arXiv preprint arXiv: 2011.06461, 2020.

[39] Chandan Reddy and Bhanukiran Vinzamuri. A Survey of Partitional and Hierarchical Clustering
Algorithms, pages 87–110. 09 2018.



A Survey on K-means Clustering Algorithms 36

[40] I. J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American
Mathematical Society, 44:522–536, 1938.

[41] Erich Schubert and Peter J. Rousseeuw. Faster k-medoids clustering: Improving the pam,
clara, and clarans algorithms. arXiv preprint arXiv: 1810.05691, 2018.

[42] D. Sculley. Web-scale k-means clustering. In The Web Conference, 2010.

[43] Shokri Z Selim and Mohamed A Ismail. K-means-type algorithms: A generalized convergence
theorem and characterization of local optimality. IEEE Transactions on pattern analysis and
machine intelligence, (1):81–87, 1984.

[44] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clustering
techniques. Proceedings of the International KDD Workshop on Text Mining, 06 2000.

[45] Mangasarian Olvi Street Nick Wolberg, William and W. Street. Breast Cancer Wisconsin (Diag-
nostic). UCI Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.

[46] Yu and Shi. Multiclass spectral clustering. In Proceedings Ninth IEEE International Conference on
Computer Vision, pages 313–319 vol.1, 2003.

A Experiments Results

A.1 Accuracy comparison

Detailed results of different algorithms’ accuracy are shown in Figure 5, Figure 6 and Figure 7.

A.2 Runtime comparison

Detailed results for runtime comparison are shown in Figure 8, Figure 9 and Figure 10.

A.3 Visualizations

Visualization results are shown in Figure 11, Figure 12, Figure 13 and Figure 14.
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Figure 5: Accuracy and ARI comparison of Digits Datasets
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Figure 6: Accuracy and ARI comparison of Iris Datasets
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Figure 7: Accuracy and ARI comparison of Wine Datasets

Figure 8: Runtime comparison of Breast Cancer Datasets
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Figure 9: Runtime comparison of Iris Datasets

Figure 10: Runtime comparison of Wine Datasets
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Figure 11: Clustering visualization of Breast Cancer Datasets
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Figure 12: Clustering visualization of Digits Datasets
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Figure 13: Clustering visualization of Iris Datasets
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Figure 14: Clustering visualization of Wine Datasets
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