# Natural Language Processing Lecture Notes

KnightNemo Instructed by TianXing He

## 0.1 Logistics

- Homework A(mainly theory, 20pts)
- Homework B(mainly coding, 20pts)
- In-class Exam(20 pts)
- Project(40pts, outstanding porjects get +5 bonus)

## 0.2 Scoring thresholds

- A+: 94-100
- A: 89-93
- A-: 84-88
- B+: 80-83

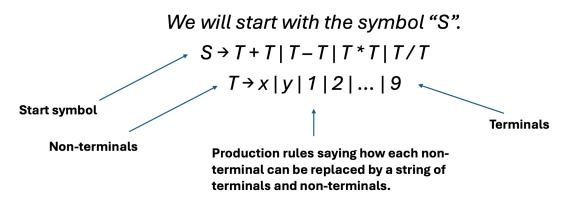
## 0.3 Reference

- [SLP] Speech and Language Processing–Jurafsky&Martin
- [INLP] Introduction to Natural Language Processing–Eisenstein

# Part I: NLP before LLM

# 1 Context-Free Grammar(CFG)

1.1 Terminology



Given G as a CFG.

The **language** of G, denoted as L(G), is the set of strings derivable by G (from the start symbol). A language L is called a **context-free language (CFL)** if there is a CFG G such that L = L(G). **Theorem** : Every regular language (regular expressions, regex), is context-free. CFG example: Natural Language

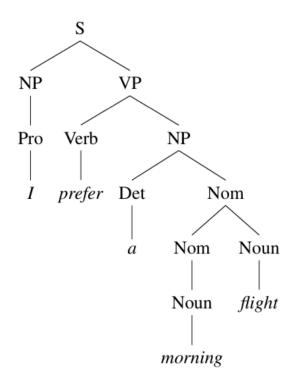
| Grammar            | Rules                                                         | Examples                                                      |
|--------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| $S \rightarrow$    | NP VP                                                         | I + want a morning flight                                     |
|                    | Pronoun<br>Proper-Noun<br>Det Nominal<br>Nominal Noun<br>Noun | I<br>Los Angeles<br>a + flight<br>morning + flight<br>flights |
| $VP \rightarrow  $ | Verb<br>Verb NP<br>Verb NP PP                                 | do<br>want + a flight<br>leave + Boston + in the morning      |
| $PP \rightarrow$   | Preposition NP                                                | from + Los Angeles                                            |

# 1.2 CNF

**Def.** Chomsky normal form (CNF) A CFG is in **Chomsky normal form (CNF)** if it is  $\varepsilon$ - free and if in addition Chomsky normal form each production is either of the form  $A \rightarrow B C$  or  $A \rightarrow a$ .

# 1.3 Parsing

Given a CFG, syntactic parsing refers to the problem of mapping from a sentence to its parse tree.



### 1.3.1 CKY Parsing

Transfer the CFG to CNF, then dynamic programming.

function CKY-PARSE(words, grammar) returns table for  $j \leftarrow$  from 1 to LENGTH(words) do for all  $\{A \mid A \rightarrow words[j] \in grammar\}$   $table[j-1, j] \leftarrow table[j-1, j] \cup A$ for  $i \leftarrow$  from j-2 down to 0 do for  $k \leftarrow i+1$  to j-1 do for all  $\{A \mid A \rightarrow BC \in grammar$  and  $B \in table[i,k]$  and  $C \in table[k, j]\}$  $table[i,j] \leftarrow table[i,j] \cup A$ 

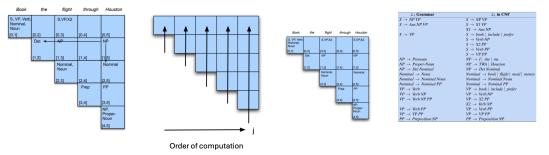
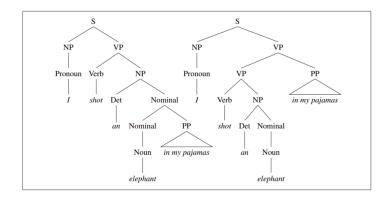


Abb. 1: Procedure of CKY-Parsing and Results

**1.3.2 Limitation** Ambiguity

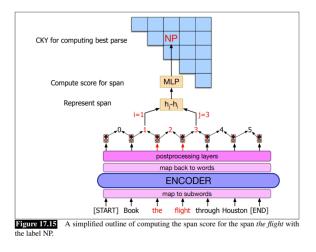


1.3.3 Probabilistic context-free grammars (PCFG)

# $A \rightarrow B C$ with probability 0.4 $A \rightarrow D E$ with probability 0.6

A corpus in which every sentence is annotated with a parse tree is called a treebank.

### 1.3.4 Neural CKY



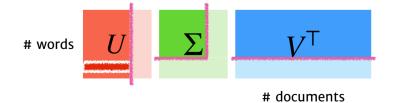
# 2 Latent Semantic Analysis(LSA)

# 2.1 Term-Document Matrix

- rows are words
- columns are documents
- entries indicate how many times word i appears in document j

$$W_{td} = \begin{array}{c} \begin{array}{c} d_1 & d_2 & d_3 & d_4 & d_5 & d_6 & d_7 \\ \hline 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ dog \\ the \end{array} \left[ \begin{array}{c} cat \\ 0 & 2 & 0 & 1 & 1 & 1 & 0 \\ 20 & 13 & 18 & 22 & 15 & 4 & 20 \end{array} \right]$$

- rows as |D|-dim word representations
- columns are |V|-dim document representations



### 2.2 Normalization

### 2.2.1 Problem

SVD would pay too much attention to the high-freq words!

#### 2.2.2 TF-IDF normalization

```
• term frequency (tf):
```

```
# of times word i appears in doc j
# of words in doc j
```

• inverse document frequency (idf), smoothed version:

 $log \left(\frac{\# \text{ of } docs + 1}{\# \text{ of } docs \text{ containing word } i + 1}\right) + 1$ 

• count'(i, j) = tf · idf

2.2.3 Pointwise mutual information (PMI)

p(w) = # of times w appears in any document / word count

p(d) = fraction of documents identical to doc d (constant)

p(w, d) = # of times w and d appear together / (# words x # docs)

PMI(i, j) = p(w, d) / (p(w) p(d)) $\approx p(d | w) \text{ if } p(d) \text{ is assumed to be constant}$ 

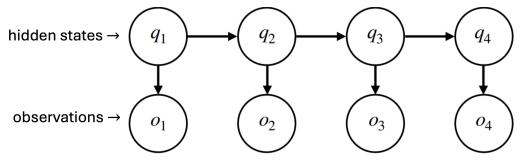
# 3 Hidden Markov Model (HMM)

### 3.1 Motivating task

Part-of-speech (POS) tagging

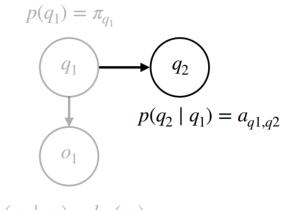
Noun Verb Noun Noun Num Noun Fed raises interest rates 0.5 percent

3.2 HMM Generation



 $p(Q, O) = p(q_1)p(q_2|q_1)p(q_3|q_2)p(q_4|q_3)p(o_1|q_1)p(o_2|q_2)p(o_3|q_3)p(o_4|q_4)$  $\uparrow \text{ Why it's called Markov...}$ 

We denote all hidden-hidden transition probabilities by  ${\bf A}$  , and all hidden- emission probabilities by  ${\bf B}.$ 



 $p(o_1 \mid q_1) = b_{q_1}(o_1)$ 

### 3.3 The forward algorithm

Notice that

$$p(O_{:t},q_t=j) = p(o_t|q_t=j)\sum_i p(O_{:t-1},q_{t-1}=i)p(q_t=j|q_{t-1},=i)$$

We denote  $p(O_{:t},q_t=j)$  as  $\alpha(t,j).$ 

$$\begin{split} \alpha(t,j) &= b_j(o_t) \sum_i \alpha(t-1,i) a_{\rm ij} \\ \alpha(1,j) &= \pi_j b_j(o_1) \end{split}$$

This is also dynamic programming.

$$p(O) = \sum_i p(O, q_t = i) = \sum_i \alpha(t, i)$$

So the total runtime is  $O(TN^2)$ .

The forward algorithm gives us  $p(O),\,p(O_{:t},q_t=j).$ 

### 3.4 The backward algorithm

Backward algorithm gives us  $p(O, q_t = i, q_{t+1} = j)$ .

Notice that

$$p(O_{t+1:}|q_t = i) = \sum_j [p(O_{t+2:}|q_{t+1} = j)p(q_{t+1} = j|q_t = i)p(o_{t+1}|q_{t+1} = j)]$$

which can be rewritten as:

$$\beta(t,i) = \sum_{j} \beta(t+1,j) a_{ij} b_j(o_{t+1})$$
 
$$\beta(T,i) = 1$$

So we know how to compute:

$$\alpha(t, i) = p(O_{:t}, q_t = i)$$
  
$$\beta(t, i) = p(O_{t+1:} | q_t = i)$$

### 3.5 Combined

Combined we can get

$$\begin{split} p(O,q_t=i) &= \alpha(t,i)\beta(t,i) \\ p(O,q_t=i,q_{t+1}=j) &= \alpha(t,i)a_{ij}b_j(o_{t+1})\beta(t+1,j) \end{split}$$

### 3.6 Inference: most probable tag sequence

Noting that  $\operatorname{argmax}_Q(Q|O) = \operatorname{argmax}_Q(Q,O).$ 

The Vertabi Algorithm:

$$\max_{\substack{Q_{t-1}:\\inj}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_i \max_{\substack{Q_{t-2}:\\inj}} p(O_{:t-1}, Q_{t-2}; q_{t-1} = i)$$

$$\max_{\substack{Q_{t-2}:\\inj}} p(O_{:t-1}, Q_{t-2}; q_{t-1} = i) \cdot p(o_t \mid q_t = j)$$

which can be rewritten as:

$$\delta(t,j) = b_j(o_t) \max_i \delta(t-1,i) \ a_{ij} \qquad \delta(1,j) = \pi(j) \ b_j(o_1)$$

### **3.7** Acquiring $\pi, a, b$

• Supervised Learning: (we have labels of q)

$$\begin{aligned} \pi_i &= p(q_1 = i) = \frac{\#(q_1 = i)}{\# \text{sequences}} \\ a_{ij} &= p(q_t = j \mid q_{t-1} = i) = \frac{\#(q_{t-1} = i, q_t = j)}{\#(q_{t-1} = i, q_t = *)} \\ b_i(w) &= p(o_t = w \mid q_t = i) = \frac{\#(q_t = i, o_t = w)}{\#(q_t = i)} \end{aligned}$$

• Unsupervised Learning:

We consider the objective:

$$\log p(O|\theta) = \log \sum_{Q} p(O, Q|\theta)$$

then for some distribution q(Q), we have:

$$\log p(O|\theta) = \log \sum_{Q} p(O, Q|\theta) = \log \sum_{Q} \left[ q(Q) \frac{p(O, Q|\theta)}{q(Q)} \right] = \log \sum_{q(Q)} \left[ \frac{p(O, Q|\theta)}{q(Q)} \right]$$

applying Jensen's inequality gives us:

$$\log p(O|\theta) = \log \sum_{q(Q)} \left[ \frac{p(O, Q|\theta)}{q(Q)} \right] \ge \sum_{q(Q)} \log p(O, Q|\theta) + \operatorname{Entropy}(q(Q)).$$

For given q(Q) the entropy term is fixed, so we need only maximize  $\sum_{q(Q)}\log p(O,Q|\theta).$ Define  $q(Q)\coloneqq p(Q|O,\theta_k),$  denote the objective as  $Q(\theta|\ \theta_k).$ Actually  $logp(O|\theta) = \Sigma_Q q(Q) logp(O, Q|\theta) + KL(q(Q)||p(Q|O, \theta)) + entropy(q(Q))$ 

$$q(Q) \coloneqq p(Q|0,\theta_k)$$

so when  $\theta$  and  $\theta_k$  are close enough, so maximizing  $\sum_{q(Q)} \log p(O, Q|\theta)$  is similar to maximizing the true objective.

$$Q(\theta|\theta_k) = \sum_Q p(Q|O, \theta_k) log p(O, Q|\theta)$$
$$= \sum_Q p(Q|O, \theta_k) log \prod a_{q_{t-1}q_t} b_{q_t}(o_t)$$
$$= \sum_{t,i,j} p(Q_{t-1} = i, Q_t = j|O, \theta_k) log a_{ij}$$
$$+ \sum_{t,j} p(Q_t = j|O, \theta_k) \log b_j(o_t)$$

the blue terms can be computed using the forward-backward algorithm.

• Optimize for A (hint: minimize the KL divergence, blackboard), we got  $\hat{a}_{ij} = \frac{\sum_{t,0} p(Q_{t-1} = i, Q_t = j, 0 | \theta_k)}{\sum_{t,0,*} p(Q_{t-1} = i, Q_t = *, 0 | \theta_k)}.$ (This is computed over a set of observations)

• The update rule for B is similar and left for exercise.

# 4 N-Gram

### 4.1 Language Model

A Language Model assigns a probability of any sequence of words. So, if W denotes any sequence of words,  $W \in V^*$ , we have:

$$\sum_W P_{LM}(W) = 1$$

- A word token (sometimes we just call it "word") is a specific occurrence of a word in a text.
- A word **type** refers to the distinct form of a word, regardless of how many times it appears in a sentence or text. It is the unique identity of the word.

### 4.2 Naive Approach: Unigram LM

Assume each word is independent.

$$P_{unigram}(w_1 \dots w_T) = P(w_1)P(w_2) \dots P(w_T)$$

Problem:

 $P_{\text{unigram}}(\text{I study NLP at THU}) = P_{\text{unigram}}(\text{I study THU at NLP})$ 

### 4.3 Bigram, Trigram, N-gram

Consider **pairs** of words. It's basically just a table lookup!

```
P<sub>bi</sub>(<bos> NLP we at THU study <eos>)
= P(NLP|<bos>) · P(we|NLP) · P(at|we) · P(THU|at) · P(study|THU)
· P(<eos>|study)
```

|                                                                                              | i        | want       | to        | eat      | chinese         | food | lunch | spend |  |
|----------------------------------------------------------------------------------------------|----------|------------|-----------|----------|-----------------|------|-------|-------|--|
| i                                                                                            | 5        | 827        | 0         | 9        | 0               | 0    | 0     | 2     |  |
| want                                                                                         | 2        | 0          | 608       | 1        | 6               | 6    | 5     | 1     |  |
| to                                                                                           | 2        | 0          | 4         | 686      | 2               | 0    | 6     | 211   |  |
| eat                                                                                          | 0        | 0          | 2         | 0        | 16              | 2    | 42    | 0     |  |
| chinese                                                                                      | 1        | 0          | 0         | 0        | 0               | 82   | 1     | 0     |  |
| food                                                                                         | 15       | 0          | 15        | 0        | 1               | 4    | 0     | 0     |  |
| lunch                                                                                        | 2        | 0          | 0         | 0        | 0               | 1    | 0     | 0     |  |
| spend                                                                                        | 1        | 0          | 1         | 0        | 0               | 0    | 0     | 0     |  |
| Figure 3.1 Bigram counts for eight of the words (out of $V = 1446$ ) in the Berkeley Restau- |          |            |           |          |                 |      |       |       |  |
| rant Project o                                                                               | corpus o | f 9332 sen | tences. 2 | Zero cou | nts are in gray | y.   |       |       |  |

We can extend to tri-gram and N-grams. As we know

$$P(w_{1:T}) = \prod_{i=0}^{T} p(w_i | w_{1:i-1}),$$

So basically N-gram is history truncation

$$p(w_i|w_{1:i-1})\approx p(w_i|w_{i-N:i-1}).$$

- special tokens:
  - ${\scriptstyle \bullet}\ <\!\!{\rm eos}\!>:$  end of sentence token
  - ${\scriptstyle \blacktriangleright}$  <unk>: out-of-vocabulary token

### 4.4 Data Sparsity

E.g. "We study anthropology in THU."

 $P_{tri}(anthropology | we study) = \frac{count(we study anthropology)}{count(we study *)}$ 

the probability is near zero. How do we deal with it?

### 4.4.1 Add-k Smoothing

 $P_{tri}(w_t \mid w_{t-2}w_{t-1}) = \frac{count(w_{t-2}w_{t-1}w_t) + k}{count(w_{t-2}w_{t-1}) + k|V|}$ 

k is hyperparameter that is tuned.

### 4.4.2 Interpolation

$$\begin{split} P_{tri}(w_t \mid w_{t-2}w_{t-1}) &= \lambda_1 P_{tri}(w_t \mid w_{t-2}w_{t-1}) \\ &+ \lambda_2 P_{bi}(w_t \mid w_{t-1}) \\ &+ \lambda_3 P_{uni}(w_t) \end{split}$$

where  $\sum_{i} \lambda_i = 1$ .

4.4.3 Backoff

 $P_{tri}^{*}(w_{t} | w_{t-2}w_{t-1})$  if count $(w_{t-2}w_{t-1}w_{t}) > 0$ 

 $P_{tri-BO}(w_t \mid w_{t-2}w_{t-1}) = \\ \alpha(w_{t-2}w_{t-1})P_{bi}(w_t \mid w_{t-2}w_{t-1})$  otherwise

### 4.5 Perplexity

A metric for LM evaluation. Smaller Perplexity means better LM.

$$PPL(W) = 2^{-l}$$
, where  $l = \frac{\log_2(P(W))}{token\_len(W)}$ 

# 5 Word2Vec

### 5.1 Tasks

### 5.1.1 Skip-gram

Learn representations that predict the context given a word.

 $p(w_{t-2}|w_t) \qquad p(w_{t-1}|w_t) \qquad p(w_{t+1}|w_t) \qquad p(w_{t+2}|w_t)$ The quick brown fox jumped over the lazy dog

### 5.1.2 CBOW (Continous Bag-of-Words)

Learn representations that predict a word given context.



### 5.2 Parameters to Learn

| a        | 1.2  | -0.1 | 0.3  | <br>0.1  | а        | 2.1  | -0.5 | 1.3 |     | 1.4  |
|----------|------|------|------|----------|----------|------|------|-----|-----|------|
| aardvark | 0.2  | 0.7  | -0.4 | <br>1.1  | aardvark | -0.4 | -0.7 | 0.5 |     | 0.1  |
| able     | -0.7 | 0.5  | 0.6  | <br>-0.8 | able     | 0.2  | 0.1  | 0.4 |     | -0.7 |
| are      | 0.1  | 0.9  | 0.8  | <br>0.7  | are      | 0.5  | 0.8  | 0.1 |     | 0.4  |
| :        |      |      | ÷    |          | :        |      |      | ÷   |     |      |
| zyzzyva  | 0.3  | -0.2 | 0.7  | <br>0.4  | zyzzyva  | -0.3 | 0.3  | 0.2 | ••• | 0.6  |

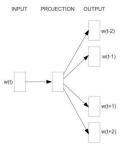
W

# U

### Input embedding matrix

Output embedding matrix

5.2.1 Skip-Gram objective



Skip-gram

The p(out|input) is simply a dot product of corresponding vectors then softmaxed.

$$p_{\theta}(\mathsf{out} \,|\, \mathsf{input}) = \frac{\exp(u_{\mathsf{out}} \cdot w_{\mathsf{input}})}{\sum_{v \in V} \exp(u_v \cdot w_{\mathsf{input}})}$$

In practice, the window size is a hyperparameter.

it is a far , far better rest that I go to , than I have ever known  $L_{t} = -\log p_{\theta}(x_{t-2} | x_{t}) - \log p_{\theta}(x_{t-1} | x_{t})$ Loss (NLL) for this

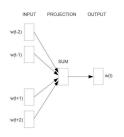
window  $-\log p_{\theta}(x_{t+1} | x_t) - \log p_{\theta}(x_{t+2} | x_t)$ 

Doing Gradient Descent on this objective yields:

$$w_x \leftarrow w_x + \eta \left( \underbrace{u_y}_{\text{Output embedding for correct label}} - \mathbb{E}_{p_\theta(v \mid x)} \left[ u_v \right] \right)$$

i.e. Move towards pointing in the same direction as the true output embedding minus the expected output embedding under the model.

### 5.2.2 CBOW objective



The desired probability is of the following form (Z is normalizing term):

$$p_{\text{CBOW}}(x_t | x_{t-s}, ..., x_{t+s}) = \frac{\exp\left(u_{x_t} \cdot \frac{1}{2s} \sum_{j=-s}^s w_{t+j}\right)}{Z}$$

In practice, the window size is a hyperparameter.

it is a far , far better rest that I go to , than I have ever known

 $L_t = -\log p_{\theta}(x_t | x_{t-2}, x_{t-1}, x_{t+1}, x_{t+2})$ 

#### 5.2.3 Trick: Negative sampling (skip-gram version)

The computation of the loss function is expensive:

$$\log p_{\theta}(y \mid x) = \log \frac{\exp(u_y \cdot w_x)}{\sum_{v \in V} \exp(u_v \cdot w_x)}$$
$$= u_y \cdot w_x - \log \sum_{v \in V} \exp(u_v \cdot w_x)$$
Takes  $O(V)$  to compute

Takes O(V) to compute.

Idea: We turn the prediction into a binary classification task.

For each true pair  $\langle x, y \rangle$ , we sample k negative samples y'.

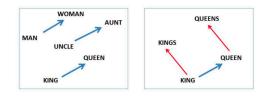
$$\log \sigma(u_y \cdot w_x) + \Sigma_i E_{y' \sim P_n} [\log \sigma(-u_{y'} \cdot w_x)].$$

.

where  $\sigma$  is the sigmoid function, and  $P_n$  can be a unigram model.

### 5.3 Word Vector Properties

### 5.3.1 Linear Word Analogies

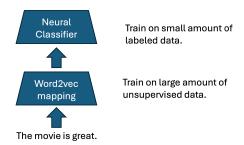


 $w_{\rm man} - w_{\rm woman} pprox w_{\rm king} - w_{\rm queen}$ 

$$w_{\text{apple}} - w_{\text{apples}} \approx w_{\text{car}} - w_{\text{cars}}$$

Applications:

• Word embedding initialize + finetuning



an useful practice before BERT.

• Compositional Morphology

help build embeddings for rare words.

$$\overrightarrow{\text{imperfection}} = \overrightarrow{im} + \overrightarrow{perfect} + \overrightarrow{ion}$$
$$\overrightarrow{perfectly} = \overrightarrow{perfect} + \overrightarrow{ly}.$$

Word2Vec works better than LSA(empirically).

Part II: Neural Networks & LLMs

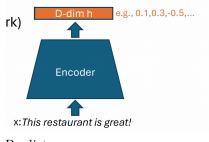
# 6 Brief Review of ML/DL Basics

### 6.1 KL-Divergence

$$\mathcal{D}_{\mathrm{KL}}(p\|q) \coloneqq \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} dx = \sum_{x \in X} p(x) \ln \frac{p(x)}{q(x)}$$

### 6.2 Multi-Class classification

- Task description: 3-class sentiment classification
  - $\blacktriangleright$  This restaurant is great!  $\rightarrow$  positive
  - ${\scriptstyle \bullet}\,$  The food is okay.  $\rightarrow$  neutral
  - ${\scriptstyle \bullet}$  I hate this dish!  $\rightarrow$  negative
- General Recipe: Encode, Predict, Train
  - Encode: an encoder (e.g., a neural network) which maps the input x to a D-dim vector h



 $\blacktriangleright$  Predict:



Linear Transformation:  $z = W^{\rm cls} h + b^{\rm cls}$ 

Then we apply sofmax: (map  $z \to \Pr(y|x)$ )

$$\operatorname{softmax}(z) = \left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)}\right]$$
$$\operatorname{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^{k} \exp(z_j)} \quad 1 \le i \le k \quad <-k \text{ is the number of classes.}$$

• Train:

Cross-Entropy Loss:

$$L_{\rm CE} = \sum_i -\log \Pr(y=y_i|x_i)$$

Update by SGD:

 $\theta^{t+1} = \theta^t - learningrate \cdot \frac{\partial}{\partial \theta} L_{CE}(\min - batch\{x_i, y_i\})$ 

### 6.3 Neural Networks

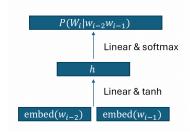
- MLP
- Back-Propogation
- Dropout Regularization
  - $\bullet$  Dropout is a regularization technique for neural networks that randomly drops a unit (along with connections) at training time with probability p
  - At test time, all units are present, but with weights scaled by p.
- Parellel Computation

# 7 Neural Network Language Model

### 7.1 FeedForward NN LM

e.g. tri-gram neural network version

 $\mathcal{L} = \sum_{(w_{i-2}, w_{i-1}, w_i) \in \text{ data}} - \log \Pr(w_i | w_{i-1}, w_{i-2})$ 



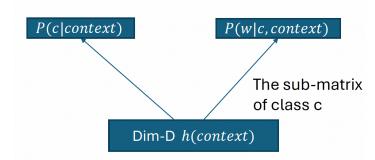
Different from sentiment classification, output class number is now |V|.

• Remedy 1: Class-based LM

Idea: cluster words into  $\sqrt{V}$  clusters.

Computation Cost:  $D|V| \rightarrow 2D\sqrt{V}$ 

 $\mathcal{L} = -[\log \Pr(c_w|h) + \log \Pr(w|c_w,h)]$ 



- Remedy 2: Noise Contrastive Estimation
  - Training without explicit normalization
  - ${\scriptstyle \bullet}\,$  Discriminating between the target token and noise tokens
  - Key speed-up:  $p_{\theta}(w|h)$  does not need to be normalized (no softmax). NCE training will automatically normalize it.

$$J^h(\theta) = \mathbb{E}_{P^h_d}\left[\log \frac{P^h_\theta(w)}{P^h_\theta(w) + kP_n(w)}\right] + k\mathbb{E}_{P_n}\left[\log \frac{kP_n(w)}{P^h_\theta(w) + kP_n(w)}\right]$$

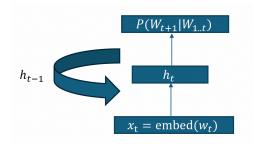
Check out Paper: [A Fast and Simple Algorithm for Training Neural Probabilistic Language Models]

Limitation FNNLM:encodes a very limited context(n-gram)

# 7.2 Recurrent Neural Network Language Model

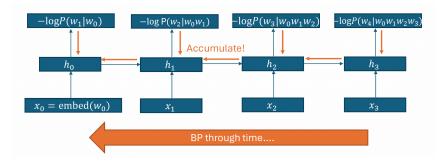
### 7.2.1 Architecture

- Encode whole history
- maintain  $h_t$  which is updated **each time step**.



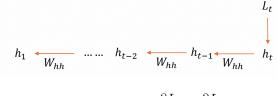
- $\bullet \ h_t = \sigma(W_{ih}x_t + W_{hh}h_{t-1} + b)$
- $y_t = \operatorname{softmax}(W_{ho}h_t + b_o)$
- $L(w) = \sum_i -\log \Pr \bigl( w_i | w_{0,\dots,i-1} \bigr)$
- $W_{ih}, W_{hh}$  are shared across timesteps (hence Recurrent).

### 7.2.2 Back-Propogation Through Time(BPTT)



- Problem:  $\frac{\partial L}{\partial h_t}$  Gradient Exploding/ Gradient Vanishing
- Intuition:

Rough estimation: 1) ignore activation function; 2) only consider  $L_t$ 



$$\frac{\partial L_t}{\partial h_1} \approx \frac{\partial L_t}{\partial h_t} W_{hh}^{t-1}$$

- +  $\|W_{hh}\| < 1:$  Gradient Vanishing
- +  $||W_{hh}|| > 1$ : Gradient Exploding
- Gradient Clipping(for gradient explosion):  $\gamma$  is hyperparameter.

$$\operatorname{clip}(\nabla L) = \min \biggl\{ 1, \frac{\gamma}{\|\nabla L\|_2} \biggr\} \nabla L$$

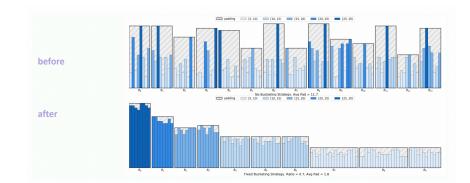
### 7.2.3 Parellel Computation

- Parellel across sentences
- Dealing with Variable Sequence Length:padding, truncating, masking

| Miniba | atch loss 2* 7 |    |      |             |             |             | Trun        | ncated      |
|--------|----------------|----|------|-------------|-------------|-------------|-------------|-------------|
| I      | walked         | my | dog. | <eos></eos> | <pad></pad> | <pad></pad> | <pad></pad> | <pad></pad> |
| I      | have           | а  | dog  | named       | Minnie,     | she         | is          | very        |

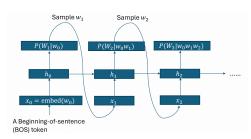
• Bucketing:

Sort sentences such that similarly lengthed sentences are in the same batch.



### 7.2.4 Sampling with RNNLM

• autoregressive



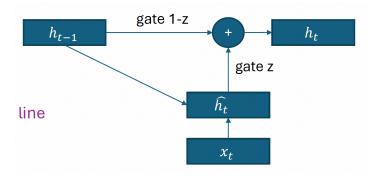
• RNN for text classification

Consider last hidden state  $h_T$  as encoding of the whole sentence. Add a linear classifier head.

### 7.2.5 LSTM(skipped) & GRU

- Used for gradient vanishing problem
- LSTM Related Blog: [Understanding LSTM Networks]
- GRU(Gated Recurrent Unit)

$$egin{aligned} &z_t = \sigma_g(W_z x_t + U_z h_{t-1} + b_z) & ext{z: Update gate, sigmoid} \ &r_t = \sigma_g(W_r x_t + U_r h_{t-1} + b_r) & ext{r: Reset gate, sigmoid} \ &\hat{h}_t = \phi_h(W_h x_t + U_h(r_t \odot h_{t-1}) + b_h) & ext{tanh} \ &h_t = z_t \odot \hat{h}_t + (1-z_t) \odot h_{t-1} & ext{<-Let's just focus on} \end{aligned}$$

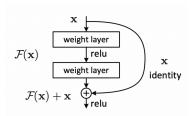


Notice that the  $(1-z) \odot h_{t-1}$  contains no weight matrix, so if z is not near 1, the gradient flows through.

# 7.3 Tricks in Deep Learning

### 7.3.1 Residual Network

 $h_{l+1} = h_l + F(h_l)$ 

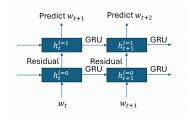


# 8 More On RNN

# 8.1 More on AR-LM

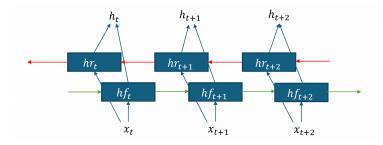
• autoregressive. We can combine different modules together to form a large neural model.

e.g.

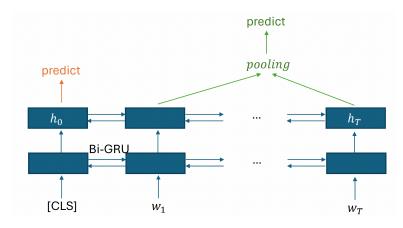


# 8.2 Bi-directional RNN

bi-directional can be useful for some applications(e.g. part-of-speech tagging)



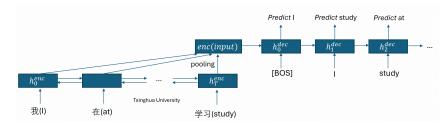
- Q: Bi-directional RNN for AR-LM?
  - Not possible, has future information.
- Q: Bi-directional RNN for sentence-encoding?
  - Way1: add a special input to the input.
  - Way2: do a max-pooling or mean-pooling of the hidden states.



# 8.3 Encoder-Decoder model for seq2seq task

e.g. Machine Translation

- Encoder: bi-RNN
- Decoder: uni-RNN

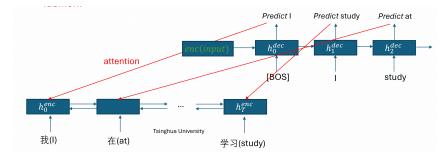


Average the encoder's hidden vectors for the input of the decoder RNN.

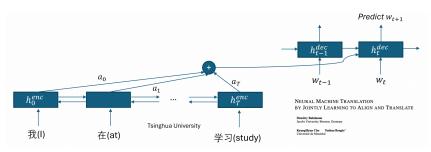
### 8.3.1 Attention!!!

Idea: A single vector is not enough, want to pay attention to different parts of the input in different timesteps.

High Level Idea:



Implementation:(Cross-Attention)



- At timestep *t*:
- Calculate alignment score:  $\hat{a}_i = \left(h_i^{\rm enc}\right)^{\sf T} W_a h_{t-1}^{\rm dec}$
- Get attention distribution:  $a_i = \mathrm{softmax}(\hat{a})$
- Pass  $\sum_{i} a_i h_i^{\text{enc}}$  to the encoder
- $W_a$  is shared across timesteps.

At training, optimize  $L = \sum_{i} -\log P_{\theta}(y_i|x_i)$ 

## 8.4 Decoding from a LM

Consider MT task for AR-LM , if we want a whole sentence as output.

The objective is to find  $\arg \max_{y} \Pr_{\text{AR-LM}}(y|x)$ .

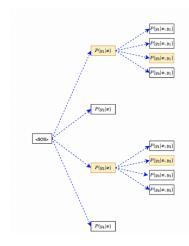
### 8.4.1 Greedy Decoding:

 $y_t \coloneqq \mathrm{arg\,max}_{y_t} \operatorname{Pr}_{LM}\!\left(y_t | x, y_{1, \ldots, t-1}\right) \, t = 1, 2, \ldots$ 

- doesn't guarantee sequence-level argmax
- Obs. : DP(like Vertabi for HMM) doesn't work here.(No optimality of sub-problems)

### 8.4.2 Beam-Search

• Maintain a number of beams(i.e. sequence of tokens).



• On each time-step:

We expand the current beams, sort them, and only keep the beams with largest log-probability.

#### 8.4.3 BLEU metric for MT

$$\begin{split} & \operatorname{precision}_n = \frac{\operatorname{number of } n \operatorname{-gram matches in reference}}{\operatorname{number of } n \operatorname{-grams in predicted}} \\ & \operatorname{brevity-penalty} = \min \left\{ 1, \exp \left( 1 - \frac{|\operatorname{reference}|}{|\operatorname{predicted}|} \right) \right\} \\ & \operatorname{BLEU} = \operatorname{brevity-penalty} \times \left( \prod_{n=1}^4 \operatorname{precision}_n \right)^{\frac{1}{4}} \end{split}$$

Attention works!

| Model         | BLEU  |              |
|---------------|-------|--------------|
| RNNencdec-50  | 17.82 | No attention |
| RNNsearch-50  | 26.75 | Attention    |
| RNNsearch-50* | 28.45 | Attention    |

# 8.5 Back Translation for MT Data Augmentation

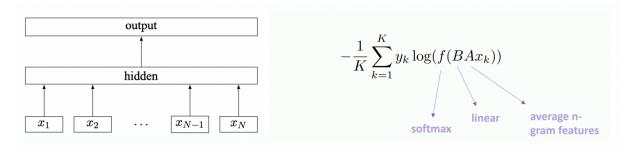
- Q: Given a decent amount of bilingual data (X, Y) and a great amount of monolingual data in target language Y. How can we create more paired data?
- A: Train a backward model:  $Y \to X$ , and conduct generation on the monoloingual data.

# 9 Text Classification

Have covered basic DNN/RNN for text classification.

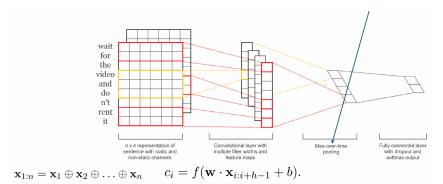
### 9.1 FastText + FNN

- Average the (pretrained) embeddings of n-gram features to form the hidden variable.
- Linear layer followed by softmax for classification.
- Very fast (small model). Can run on CPUs. Reasonable performance.

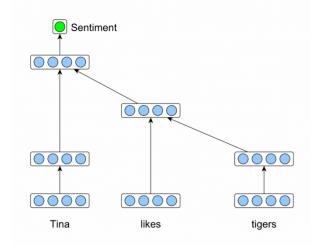


### 9.2 CNN for text classification

- RNN deals with variable lengths
- CNN can also do that!



# 9.3 Recursive neural networks with tree structure



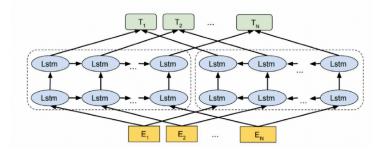
Build on parse trees. Also check Tree LSTM.

## 9.4 GLUE tasks

- Many natural language understanding (NLU) tasks can be posed as a text classification task. The General Language Understanding Evaluation (GLUE) benchmark.
- a harder set of tasks, which brings SuperGLUE

## 9.5 Deep contextualized word representation (ELMo)

- Embeddings from Language Models
- Model: multi-layer bidirectional LSTM
- Objective: predict the next word in both directions independently; i.e., left-to-right and right-to-left
- Data: 1B word LM data
- Downstream: extract output-layer features and add them to existing models (as the input word embeddings)

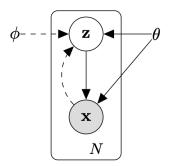


• Strong Performance on GLUE tasks. Considered pioneers of *self-supervised generative pretraining* (e.g., BERT).

# 10 VAE-LM

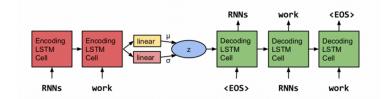
## 10.1 Motivation

In RNNLM, we generate token by token. VAE tries to represent whole sentence using z. We learn a encoder:  $q_{\phi}(z|x)$  and a decoder(generative model):  $p_{\theta}(x|z)$ .



# 10.2 Generation:

- Sample z from prior p(z)
- Sample x from generative model  $p_{\theta}(x|z)$



# 10.3 Training:

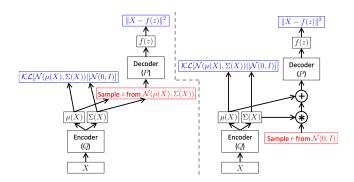
The "ELBO" objective

$$\mathcal{L}(\boldsymbol{\theta}; \boldsymbol{x}) = -\mathrm{KL}(q_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x}) \| \boldsymbol{p}(\boldsymbol{z})) + \mathbb{E}_{q_{\boldsymbol{\theta}}(\boldsymbol{z}|\boldsymbol{x})}[\log p_{\boldsymbol{\theta}}(\boldsymbol{x}|\boldsymbol{z})] \leq \log p(\boldsymbol{x})$$

Derivation:

$$\begin{aligned} &\ln p(x) \\ &= \ln \int_{z}^{z} p(x, z) \\ &= \ln \int_{z}^{z} p(x, z) \frac{q(z|x)}{q(z|x)} \\ &\geq \mathbb{E}_{q(z|x)} [\ln \frac{p(x, z)}{q(z|x)}] \\ &= \mathbb{E}_{q(z|x)} [\ln \frac{p(x|z)p(z)}{q(z|x)}] \\ &= \mathbb{E}_{q(z|x)} [\ln p(x|z)] + \mathbb{E}_{q(z|x)} [\ln \frac{p(z)}{q(z|x)}] \\ &= \mathbb{E}_{q(z|x)} [\ln p(x|z)] + \int_{z}^{z} q(z|x) \ln \frac{p(z)}{q(z|x)}] \\ &= \mathbb{E}_{q(z|x)} [\ln p(x|z)] - D_{KL} [q(z|x)||p(z)]] \\ &= likelihood - KL \end{aligned}$$

• Reparameterization trick:



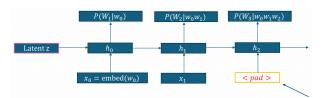
 $z=\mu+\Sigma\odot\mathcal{N}(0,I),$  we can do back-prop now. Continous Latent Space.

## 10.4 Optimization Challenge:

In vanilla VAE-LM training, KL term quickly decrease to zero(throwing away latent information). • KL cost annealing

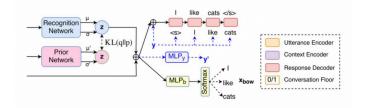
KL term's weight gradually increase with training process.

• Input word dropping



• Bag of words Loss

In parallel, train the decoder network to predict the bag-of-words in the response **x** as shown in.



# 11 Subword Tokenization

# 11.1 Byte Pair Encoding(BPE) Tokenization

Used in GPT, Llama.

- (1) Start with a unigram vocabulary of all characters in the data.
- (2) In the data, find the most frequent pair, merge it, and add to the vocabulary.
- (3) Stop when vocabulary is of pre-determined size (e.g., 50k).

Example:



es, est, lo, low...

l. o. w. e. r. n. w. s. t. i. d. es. est. lo. low

Vocabulary

lowest $\rightarrow$ low,est lost $\rightarrow$ lo,s,t

### 11.2 Other Approaches

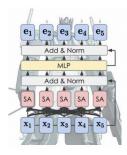
• Word Piece(BERT), sentence piece...

# 12 Transformers, BERT, GPT

### 12.1 Transformer

This part omittes lots of details as the author believes he know transformers well enough.

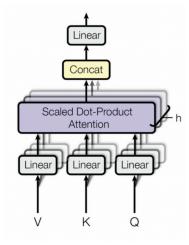
A transformer Block:



### 12.1.1 Self-Attention

 $a_{i*} = \operatorname{softmax}\left(\frac{q_i^{\mathsf{T}}k_*}{\sqrt{\dim(k_*)}}\right), z_i = \sum_j a_{ij}v_j$  Can be computed in Parellel

### 12.1.2 Multi-Head Attention



$$\begin{split} \text{MultiHead}(Q, K, V) &= ext{Concat}( ext{head}_1, ..., ext{head}_ ext{h}) W^O \ ext{where head}_ ext{i} &= ext{Attention}(QW^Q_i, KW^K_i, VW^V_i) \end{split}$$

Where the projections are parameter matrices  $W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}$ ,  $W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}$ ,  $W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_k}$ ,  $W_i^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$ .

### 12.1.3 Other Designs in the attention block

- FeedForward NN
- Residual:

$$f_{\rm residual}(x,F) = F(x) + x$$

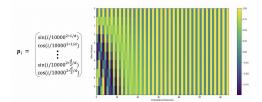
for self-attention and FFNN.

• LayerNorm:

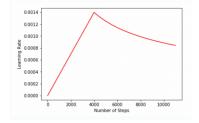
$$\operatorname{LayerNorm}(h) = \alpha \cdot \frac{h - \operatorname{mean}(h)}{\operatorname{std}(h)} + \beta \quad (\alpha, \beta \text{ are learned parameters})$$

- BatchNorm: across samples, same feature;
- ▶ LayerNorm: across features, same sample

### 12.1.4 Position Encoding



12.1.5 Learning Rate Warmup and Linear Decay



## 12.2 BERT

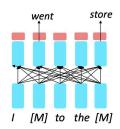
Bidirectional Encoder Representations from Transformers

Major Objectives in BERT:

- Masked language modeling (MLM)
- Next sentence prediction (NSP)

### 12.2.1 Masked language modeling (MLM)

- randomly mask (via a [mask] token) 15% of the tokens in each sequence.
- ask the transformer model to predict the masked token on the top layer via standard cross-entropy loss.



- Problem: not ideal representation for non-masked words
- Heuristic:
  - For 10% of the time, we replace [M] with a random token.

- ${\scriptstyle \bullet}\,$  For another 10% of the time, we do not change the original token.
- $\blacktriangleright$  O.w., the mask token is used.

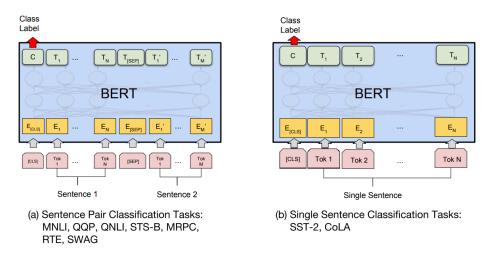
### 12.2.2 Next sentence prediction (NSP)

- add a [CLS] token and ask BERT to predict whether sentence2 is the next sentence of sentence1.
- For 50% of the time, a random sentence is used as a negative example.
- Actually not that useful(not used after bert)



### 12.2.3 BERT finetuning

• slightly modify the top layers of BERT and tune it ondownstream tasks.

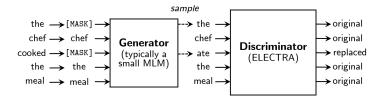


### 12.2.4 Extensions of BERT

- ALBERT (2019, A Lite BERT ...)
- RoBERTa (2019, A Robustly Optimized BERT ...)
- DistilBERT (2019, smaller, faster, lighter version of BERT)
- ELECTRA (2020, Pre-training Text Encoders as Discriminators not Generators)
- LongFormer (2020, Long-Document Transformer)

I. ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately):

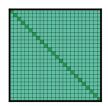
- Instead of masking the input, our approach corrupts it by replacing some tokens with plausible alternatives sampled from a small generator network.
- Then, instead of training a model that predicts the original identities of the corrupted tokens, we train a discriminative model that predicts whether each token in the corrupted input was replaced by a generator sample or not.

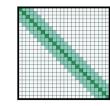


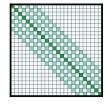
• Much higher data efficiency(task is defined over all sequence instead of just masked-out ones)

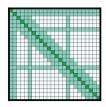
### II. LongFormer

- $\mathcal{O}(N^2)$  attention computation cost is expensive for long sequence
- Limit the attention to a small span of tokens to save computation
- Sliding Window Attention:
  - ${\scriptstyle \bullet}$  limit the attention to a sliding window of size w.
  - Computation cost:  $\mathcal{O}(N \cdot w)$
- Q: For an embedding on layer L, what's its receptive field?
- A:  $L \cdot w$





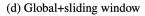




(a) Full  $n^2$  attention

(b) Sliding window attention (c) I

(c) Dilated sliding window



### • Dilated Sliding Window:

- ${\scriptstyle \blacktriangleright}$  Larger receptive field, but miss some local information
- ▶ Fix: Multi-Head Attention.
- We can use a combination of 2 heads of dilated and other heads with local sliding window.

# 12.3 Transformer Decoder & GPTs

- BERT-like models are great for sentence/document encoding or deep contextualized word embedding.
- But you can not directly use it for text generation, or infer the log-probability of a given text.
- So let's talk about transformers for autoregressive language modelling (generation).

## 12.3.1 Causal Mask

• apply the mask before the softmax operation, so that the attention distribution is still normalized.

| (be  |      | res<br>softr | nax) |                 |      | <b>asked</b><br>fore |      |      |              |      | Sco  | res  |      |
|------|------|--------------|------|-----------------|------|----------------------|------|------|--------------|------|------|------|------|
| 0.11 | 0.00 | 0.81         | 0.79 | Apply Attention | 0.11 | -inf                 | -inf | -inf | Softmax      | 1    | 0    | 0    | 0    |
| 0.19 | 0.50 | 0.30         | 0.48 | Mask            | 0.19 | 0.50                 | -inf | -inf | (along rows) | 0.48 | 0.52 | 0    | 0    |
| 0.53 | 0.98 | 0.95         | 0.14 |                 | 0.53 | 0.98                 | 0.95 | -inf |              | 0.31 | 0.35 | 0.34 | 0    |
| 0.81 | 0.86 | 0.38         | 0.90 |                 | 0.81 | 0.86                 | 0.38 | 0.90 |              | 0.25 | 0.26 | 0.23 | 0.26 |

# 12.3.2 GPTs

- GPT models are transformer decoders trained for AR-LM.
- generative capability emerged from large-scale training

|              | GPT-1                                                                     | GPT-2                                                     | GPT-3                                                                                                                    |
|--------------|---------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Model        | Transformer Decoders<br>(12 Decoder blocks;12 Masked-<br>Attention heads) | Transformer Decoders<br>(48 Decoder blocks)               | Transformer Decoders<br>(48 Decoder blocks)                                                                              |
| Objective    | Next word prediction<br>(cross-entropy loss)                              | Next word prediction<br>(cross-entropy loss)              | Next word prediction<br>(cross-entropy loss)                                                                             |
| Data         | BooksCorpus (11k books from a variety of genres)                          | BooksCorpus     WebText (8M web pages)                    | CommonCrawl (410B tokens)     WebText2 (19B tokens)     Booka1 (12B tokens)     Booka2 (55B tokens)     Wiki (3B tokens) |
| # Parameters | 117M                                                                      | 1.5B                                                      | 175B                                                                                                                     |
| Paper Title  | Improving Language<br>Understanding by<br>Generative Pre-Training         | Language Models are<br>unsupervised multitask<br>learners | <u>Language Models are</u><br>Few-Shot Learners                                                                          |
| Year         | 2018                                                                      | 2019                                                      | 2020                                                                                                                     |

I. GPT-1(before BERT, still focused on NLU)

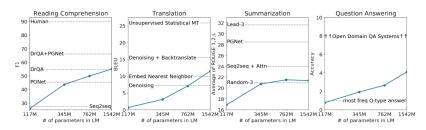
- pretrain a transformer decoder AR-LM on large data, and the finetune it on downstream NLU tasks.
- take the final-layer embedding of the last token in the text, and add a linear classification head.

### II. GPT-2

- Zero-shot capability to downstream tasks:
  - $\blacktriangleright$  No finetune
  - In generation, it continues the language.

Prompts: Translate the following text to French. Text: [ENG TEXT] French:

- WebText data contains all sorts of data → we are implicitly doing multi-task training during the pretraining.
- Scaling up can help zero-shot ability



#### • Common knowledge

| Question                                                               | Generated Answer  | Correct | Probability |
|------------------------------------------------------------------------|-------------------|---------|-------------|
| Who wrote the book the origin of species?                              | Charles Darwin    | 1       | 83.4%       |
| Who is the founder of the ubuntu project?                              | Mark Shuttleworth | 1       | 82.0%       |
| Who is the quarterback for the green bay packers?                      | Aaron Rodgers     | 1       | 81.1%       |
| Panda is a national animal of which country?                           | China             | 1       | 76.8%       |
| Who came up with the theory of relativity?                             | Albert Einstein   | 1       | 76.4%       |
| When was the first star wars film released?                            | 1977              | 1       | 71.4%       |
| What is the most common blood type in sweden?                          | A                 | ×       | 70.6%       |
| Who is regarded as the founder of psychoanalysis?                      | Sigmund Freud     | 1       | 69.3%       |
| Who took the first steps on the moon in 1969?                          | Neil Armstrong    | 1       | 66.8%       |
| Who is the largest supermarket chain in the uk?                        | Tesco             | 1       | 65.3%       |
| What is the meaning of shalom in english?                              | peace             | 1       | 64.0%       |
| Who was the author of the art of war?                                  | Sun Tzu           | 1       | 59.6%       |
| Largest state in the us by land mass?                                  | California        | ×       | 59.2%       |
| Green algae is an example of which type of reproduction?               | parthenogenesis   | ×       | 56.5%       |
| Vikram samvat calender is official in which country?                   | India             | 1       | 55.6%       |
| Who is mostly responsible for writing the declaration of independence? | Thomas Jefferson  | 1       | 53.3%       |

• Open-ended generation

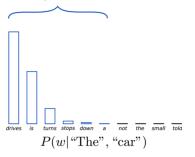
- Open-ended generation refers to generation tasks that has big freedom and diversity, like story or news generation.
- very different from translation or summarization, where the generation is like "another version" of the input.
- The model needs to rely its own (memory, consistency or creativity).

### 12.3.3 The top-K sampling algorithm

- Direct sampling from  $\Pr_{\text{AR-LM}}(\cdot |w_{[1:i]})$  can be diverse but has poor quality or consistency.
- Top-K sampling: trade diversity for quality
  - Represent  $P(\cdot \mid w_{[1:i]})$  by  $p = (p_1, ..., p_{|V|})$ , where  $p_1 \ge ... \ge p_{|V|}$ .
  - Sample  $W_{i+1}$  from  $\hat{p}$ :

$$\hat{p}_i = \frac{p_i \cdot \mathbb{1}[i \leq k]}{Z}$$

 $\sum_{w \in V_{\text{top-K}}} P(w|\text{"The"},\text{"car"}) = 0.99$ 



• Sampling algorithms provide a sweet quality-diversity trade-off. (Essential difference from decoding e.g. beam search)

#### Rethink MLE, Sampling, and Bad Behavior 13

#### Criticizing teacher forcing (MLE) 13.1

#### 13.1.1 Teacher Forcing(MLE)

- The MLE objective:  $\log P(W) = \sum_{i} \log P(w_i | w_{[1:i-1]})$  where W is from training data. However in generation,  $W_i^M \sim P(W_i | W_{1:i-1}^M)$ , there may be a distribution shift.

#### 13.1.2 The exposure bias hypothesis:

Due to the exposure to ground-truth prefix, the model is biased to only perform well during training, but not generation.

Importantly, the error is hypothesized to **accumulate** during generation, and the generation will be incrementally distorted.

#### 13.1.3 Language GANs

- This belief in exposure bias motivates Language GANs.
- In GAN, no teacher forcing, training is directly applied to model samples.
- GAN example in CV:

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$ 

• However in NLP, not differentiable. the gradient can not flow back through discrete sampling.

Solutions:

- The Gumbel-softmax reparameterization
- The reinforce trick (policy gradient)

### 13.1.4 The Gumbel-softmax reparameterization

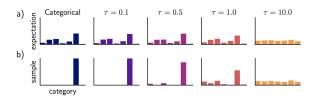
The Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2014) provides a simple and efficient way to draw samples z from a categorical distribution with class probabilities  $\pi$ :

$$z = \text{one\_hot}\left(\arg\max_{i} \left[g_i + \log \pi_i\right]\right) \tag{1}$$

where  $g_1...g_k$  are i.i.d samples drawn from Gumbel $(0, 1)^1$ . We use the softmax function as a continuous, differentiable approximation to arg max, and generate k-dimensional sample vectors  $y \in \Delta^{k-1}$  where

$$y_i = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^k \exp((\log(\pi_j) + g_j)/\tau)} \quad \text{for } i = 1, ..., k.$$
(2)

One practice is to anneal  $\tau$  from large to small during training.



#### • Straight-Through Trick:

Sometimes we want our encoding to really be one-hot during training.

Do argmax to get the one-hot vector, y\_hard

 $ret = y_hard - y_soft.detach() + y_soft$ , returns the ont-hot vector, but the gradient only flows through the soft part in back-prop.

#### 13.1.5 The Reinforce Trick

```
 \underset{\theta}{\operatorname{arg max}} \mathbb{E}_{\boldsymbol{y} \sim P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x})}[r(\boldsymbol{x}, \boldsymbol{y})] 
 \nabla_{\theta} \mathbb{E}_{\boldsymbol{y} \sim P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x})}[r(\boldsymbol{x}, \boldsymbol{y})] 
 = \nabla_{\theta} \sum_{\boldsymbol{y}} r(\boldsymbol{x}, \boldsymbol{y}) P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}) 
 = \sum_{\boldsymbol{y}} r(\boldsymbol{x}, \boldsymbol{y}) \nabla_{\theta} P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}) 
 = \sum_{\boldsymbol{y}} r(\boldsymbol{x}, \boldsymbol{y}) P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}) \nabla_{\theta} \log P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x}) 
 = \mathbb{E}_{\boldsymbol{y} \sim P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x})} [r(\boldsymbol{x}, \boldsymbol{y}) \nabla_{\theta} \log P_{\theta}(\boldsymbol{y} \mid \boldsymbol{x})]
```

Examples of Language GANs:

• SeqGAN: <u>SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient</u>

Reported better generation quality than MLE baseline.

However, for MLE baselines, we can tune the temperature to tradeoff quality and diversity.

$$\hat{p}_i = \frac{\exp(\log(p_i)/T)}{\sum_{j=1}^{|V|} \exp(\log(p_j)/T)}.$$

#### Check out Language GANs Falling Short

Results: Language GANs are actually worse than the MLE baseline. (NLL test represents diversity, NLL oracle represents quality.)

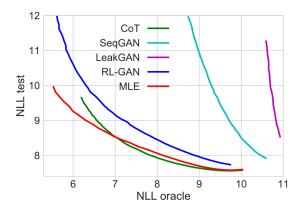


Figure 3: Effect of temperature tuning on the global metrics (*lower is better for both metrics*) for the synthetic task.

### TakeAway:

- Language GAN is a great idea, but GAN training is notoriously unstable.
- MLE training + sampling algorithm is an amazing combination.

### 13.2 Sampling algorithms

13.2.1 Top-k Sampling

$$\hat{p}_i = \frac{p_i \cdot \mathbb{1}[i \leq k]}{Z}$$

13.2.2 Nucleus(top-P):

$$\hat{p}_i = \frac{p_i \cdot \mathbb{1}\left[\sum_{j=1}^{i-1} p_j < P\right]}{Z}$$

13.2.3 Tempered (T)

$$\hat{p}_i = \frac{\exp\left(\frac{\log(p_i)}{T}\right)}{Z}$$

Check out: A Systematic Characterization of Sampling Algorithms for Open-ended Language Generation

13.2.4 Common Features of these three sampling methods

• The order of elements are preserved:

$$p_i \geq p_j \rightarrow \hat{p}_i \geq \hat{p}_j$$

• The entropy of the distribution are reduced

$$\mathcal{H}(\hat{p}) \leq \mathcal{H}(p)$$

• The **slope** of the non-zero elements are **preserved**:

$$\frac{\log p_i - \log p_j}{\log p_j - \log p_k} = \frac{\log \hat{p}_i - \log \hat{p}_j}{\log \hat{p}_j - \log \hat{p}_k} \quad \text{if } \hat{p}_i, \hat{p}_j, \hat{p}_k > 0$$

Hypothesis: [See Paper for details]

- Sampling algorithms that satisfy all three properties should be at least as good as the top-k/nucleus/ tempered sampling in the Q-D trade-off.
- Sampling algorithms that violate at least one of the properties won't be as good.

**Take-away**: What matters is not the details of how the algorithm is designed, but the high-level principles (properties) on which it is based on.

### 13.3 Correcting bad behavior of NLG models

#### 13.3.1 Biased decoding

• Motivation: Discourage **repeating** token

$$p_i = \frac{\exp(x_i/(T \cdot I(i \in g)))}{\sum_j \exp(x_j/(T \cdot I(j \in g)))} \qquad I(c) = \theta \text{ if c is True else 1}$$

• T is temperation, g refers to the set of generated tokens. In practice, set  $\theta = 1.2$ 

### 13.3.2 Unlikelihood training for repetition

• Explicitly discourage repeating tokens during training

$$\mathcal{L}_{\text{UL-token}}^{t}(p_{\theta}(\cdot|x_{< t}), \mathcal{C}^{t}) = -\alpha \cdot \underbrace{\sum_{c \in \mathcal{C}^{t}} \log(1 - p_{\theta}(c|x_{< t}))}_{\text{unlikelihood}} - \underbrace{\log p_{\theta}(x_{t}|x_{< t})}_{\text{likelihood}}.$$

where  $\mathcal{C}_{\text{prev-context}}^t = \{x_1, ..., x_{t-1}\} \setminus \{x_t\}.$ 

#### 13.3.3 The MMI criterion

- Motivation: To discourage generic responses in chatbot(e.g. "I don't know", "I'm ok")
- Usual Objective:

$$\hat{T} = \arg \max_{T} \{ \log p(T|S) \}$$

• Maximum (pointwise) Mutual Information (MMI) Objective:

We compares the probability of two events occurring together to what this probability would be if the events were independent:

$$\max_T \log \frac{p(S,T)}{p(S)p(T)}$$

which can be formulated as

$$\hat{T} = \arg\max_{\mathcal{T}} \{\log p(T|S) - \log p(T)\}.$$

#### 13.3.4 Training with negative examples

- Motivation: generic response of chatbots
- Dynamically count the frequency of decoded response from the model during training, and assign negated gradients to those most frequent samples (denoted as  $y_{neg}$ ).

 $Loss_{new} = -\log P_{\theta}(y_{pos}|x_{pos}) + \log P_{\theta}(y_{neg}|x_{neg})$ 

### 13.3.5 Hallucination

- "Hallucinations" refers to seemingly convincing yet factually incorrect text.
- Cover in future lectures

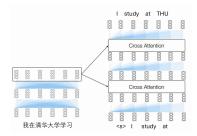
# 14 Transformer encoder-decoder & RoPE

- Encoder: BERT
- Decoder: GPT
- For seq2seq tasks(e.g. Machine Translation), construct encoder-decoder transformer

# 14.1 Encoder-Decoder Transformer

### 14.1.1 Architecture

• Each decoder layer is a **self-attention** followed by a **cross-attention**.



- The query vector for a transformer decoder's cross-attention head is from the output of the previous decoder layer. However, the key and value vectors are from the encoders' outputs.
- Pretraining Encoder-Decoder Transformer:

Similar to MLM in BERT (encoder), we can design self-supervised pretraining objective as seq2seq tasks for encoder-decoder models.

### 14.1.2 Examples:

• BART: <u>BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and</u> <u>Comprehension</u>

BART [Lewis et al. '19]

• T5: <u>Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer</u>

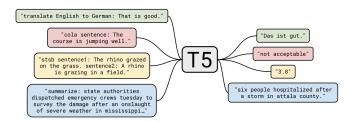
T5 [Raffel et al. '19]

Thank you for inviting me to your party last week.

### • T5 paradigm: text2text

In T5 task-specific finetuning, all tasks (including classification or regression) are converted to a textto-text format.

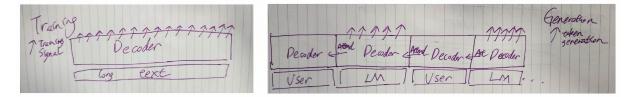
In this way, we do not need to change model architecture for most tasks.



### 14.1.3 From Encoder-Decoder to Decoder-only

Consider multi-round chatbot dialogue scenario,

- Decoder-Only:
  - Training and Inference architecture is highly constistent
  - ▶ Naturally handles variable-length text generation
  - During application, we just do natural concatenation (always causal attention). No computation is wasted (assuming we save hidden states of the history).



- Encoder-Decoder:
  - In pretraining, we need to build text of variable length, and the training signal is only from the decoder side.
  - During application, we need to re-encode (because the encoder is bi-directional) the whole history for each dialogue turn.



### 14.2 Rotary position embedding (RoPE)

• Absolute Embedding:

$$\begin{split} f_{t:t \in \{q,k,v\}} &:= W_{t:t \in \{q,k,v\}}(x_i + p_i) \\ p_i &= \begin{cases} p_{i,2t} = \sin\Bigl(\frac{k}{1000^{\frac{2t}{d}}}\Bigr) \\ p_{i,2t+1} = \sin\Bigl(\frac{k}{1000^{\frac{2t}{d}}}\Bigr) \end{cases} \in \mathbb{R}^d \end{split}$$

- RoPE
  - Motivation: want the dot product between query (position m) and key (position n) to directly be a function of (m n).

 $\langle f_q(\boldsymbol{x}_m,m), f_k(\boldsymbol{x}_n,n) \rangle = g(\boldsymbol{x}_m,\boldsymbol{x}_n,m-n).$ 

▶ 2D-case:

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \\ x_m^{(2)} \end{pmatrix}$$

▶ General Form:

$$\boldsymbol{R}_{\Theta,m}^{d} = \begin{pmatrix} \cos m\theta_{1} & -\sin m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ \sin m\theta_{1} & \cos m\theta_{1} & 0 & 0 & \cdots & 0 & 0\\ 0 & 0 & \cos m\theta_{2} & -\sin m\theta_{2} & \cdots & 0 & 0\\ 0 & 0 & \sin m\theta_{2} & \cos m\theta_{2} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & 0 & \cdots & \cos m\theta_{d/2} & -\sin m\theta_{d/2}\\ 0 & 0 & 0 & 0 & \cdots & \sin m\theta_{d/2} & \cos m\theta_{d/2} \end{pmatrix}$$
(15)

is the rotary matrix with pre-defined parameters  $\Theta = \{\theta_i = 10000^{-2(i-1)/d}, i \in [1, 2, ..., d/2]\}$ . A graphic illustration of RoPE is shown in Figure (1). Applying our RoPE to self-attention in Equation (2), we obtain:

 $f_{\{q,k\}}(\boldsymbol{x}_m,m) = \boldsymbol{R}^d_{\Theta,m} \boldsymbol{W}_{\{q,k\}} \boldsymbol{x}_m$ 

$$\boldsymbol{q}_{m}^{\mathsf{T}}\boldsymbol{k}_{n} = (\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{W}_{q}\boldsymbol{x}_{m})^{\mathsf{T}}(\boldsymbol{R}_{\Theta,n}^{d}\boldsymbol{W}_{k}\boldsymbol{x}_{n}) = \boldsymbol{x}^{\mathsf{T}}\boldsymbol{W}_{q}\boldsymbol{R}_{\Theta,n-m}^{d}\boldsymbol{W}_{k}\boldsymbol{x}_{n}$$
(16)

• Intuition:

where

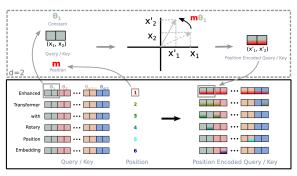


Figure 1: Implementation of Rotary Position Embedding(RoPE).

▶ adopted in the latest LLaMA models

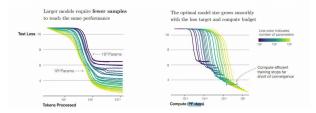
# 15 GPT-3 & In-Context Learning

### 15.1 Scaling Law of LMs

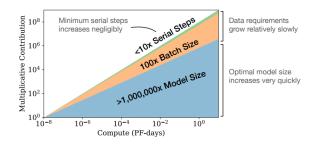
### 15.1.1 Data Composition of GPT-3

- Common Crawl (webpages)
- High quality data (such as Wiki) is intentionally repeated multiple times.

### 15.1.2 Scaling Law



• Model Size grow faster than need for Data



## 15.2 GPT-3 & In-Context Learning

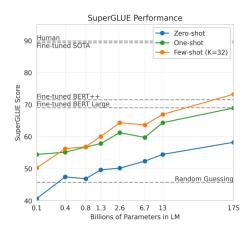
• LM perplexity improves

### 15.2.1 In-Context Learning

- So far, "learning" usually refers to **gradient update** with labelled data (classification or seq2seq tasks).
- Now, we only want to construct some prompt (also called context or prefix) and ask the LM to do continuation.
- Prompt Example

"Please negate the meaning of the sentence. [<- task description, optional] I hate  $NLP \Rightarrow I$  love NLP; Today's weather is good  $\Rightarrow$  Today's weather is bad; [<- the demonstrations] I had a good day  $\Rightarrow$  [<- the example for testing (output)]"

• Performance on SuperGLUE (32-shot ICL)

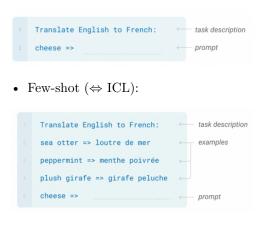


- Reasons:
  - Mostly unclear.
  - <u>GPT-3 Paper</u>'s Explanation:

"During unsupervised pre-training, a language model develops a broad set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize the desired task."

### 15.2.2 Terminology of GPT-3

• Zero-shot:



• Finetuning:

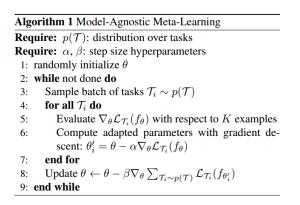
|   | sea otter => loutre de mer                 |          | example #1 |
|---|--------------------------------------------|----------|------------|
|   | $\checkmark$                               |          |            |
|   |                                            |          |            |
|   | $\checkmark$                               |          |            |
|   | <pre>peppermint =&gt; menthe poivrée</pre> | <u> </u> | example #2 |
|   | $\checkmark$                               |          |            |
|   | gradient update                            |          |            |
|   |                                            |          |            |
|   | ¥                                          |          |            |
|   | •••                                        |          |            |
|   | ↓<br>↓<br>plush giraffe => girafe peluche  | <i>←</i> | example #N |
| 1 | •                                          | <i>←</i> | example #N |
| 1 | •                                          | <i>←</i> | example #N |
| 1 | plush giraffe => girafe peluche            |          | example #N |

### 15.2.3 Few-shot learning before GPT3: MAML

- Before GPT3, few-shot learning still refers to how a model can quickly adapt to a new task demonstrated with only a few examples **via gradient update**.
- We have a **meta-learning phase** on a wide set of tasks. In effect, the meta-learning problem treats entire tasks as training examples.

Check out Paper: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Chelsea Finn!

- Assuming each sub-task has a (small) few-shot train-set and a (smaller) dev-set.
- In the inner loop of each sub-task, we update to a pseudo  $\theta$ .
- In the outer loop, we compute real gradient on the dev-set loss with  $\theta'$ . So the real gradient involves second-order term (why?).



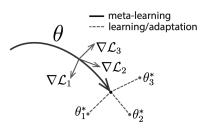


Figure 1. Diagram of our model-agnostic meta-learning algorithm (MAML), which optimizes for a representation  $\theta$  that can quickly adapt to new tasks.

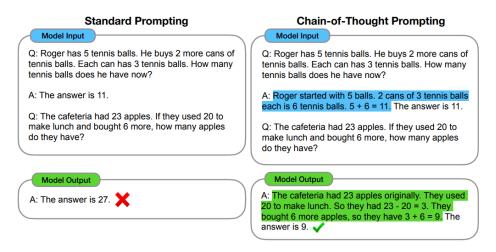
### 15.2.4 GPT-3 on NLP-community

- Not Open-sourced
- API calls for prompted generation. API calls for finetuning ain't that useful.
- Research focus changes to building good prompts

# 16 Chain-of-Thought(CoT) Prompting

## 16.1 Idea

In the few-shot demonstrations, add reasoning steps before giving the answer. These reasoning steps are **manually written** by humans.



Check out Paper: <u>Chain-of-Thought Prompting Elicits Reasoning in Large Language Models</u>

## 16.2 Results

• CoT is an **emergent ability** of model scale. That is, its impact is more pronounced when the model large (~ 100B).

## 16.3 Zero-Shot CoT

Check out Paper: Large Language Models are Zero-Shot Reasoners

#### (a) Few-shot

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A:

(Output) The answer is 8. X

### (c) Zero-shot

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

A: The answer (arabic numerals) is

(Output) 8 🗙

### (b) Few-shot-CoT

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there? A:

(Output) The juggler can juggle 16 balls. Half of the balls are golf balls. So there are 16 / 2 = 8 golf balls. Half of the golf balls are blue. So there are 8 / 2 = 4 blue golf balls. The answer is 4.

### (d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls are blue. How many blue golf balls are there?

### A: Let's think step by step.

(Output) There are 16 balls in total. Half of the balls are golf balls. That means that there are 8 golf balls. Half of the golf balls are blue. That means that there are 4 blue golf balls.

• Chaining of two prompts:

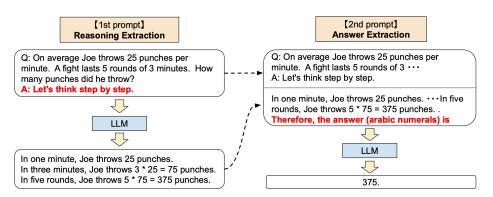


Figure 2: Full pipeline of Zero-shot-CoT as described in 33 we first use the first "reasoning" prompt to extract a full reasoning path from a language model, and then use the second "answer" prompt to extract the answer in the correct format from the reasoning text.

This ability is also emergent with model size.

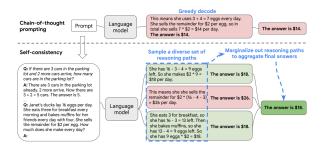
## 16.4 Intuitions behind why CoT works

- Divide and conquer
- Reasoning steps take more computation, giving LM more time to think.

# 17 More (Research) on CoT & ICL

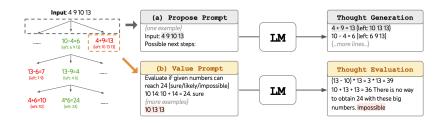
## 17.1 CoT with self-consistency

- For CoT, we could sample multiple reasoning path from the LLM with temperature sampling.
- And then take a majority voting over the answers!



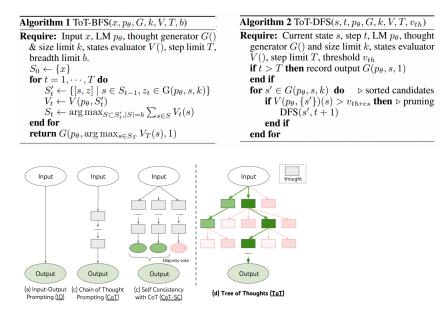
## 17.2 Tree of thoughts (ToT)

- Maintain and expand a thought-tree.
- For each existing step, we prompt the LLM the propose multiple next steps, and also to judge which path (by giving a value) is more promising.
- The nodes that are judged to be unlikely will be discarded.



Check out Paper: Tree of Thoughts: Deliberate Problem Solving with Large Language Models

Expand Nodes in some order:



## 17.3 Bias in ICL

### 17.3.1 Majority and Recency Bias

• The demonstration's labels and permutation changes the performance

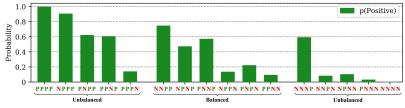


Figure 4. Majority label and recency biases cause GPT-3 to become biased towards certain answers and help to explain the high variance across different examples and orderings. Above, we use 4-shot SST-2 with prompts that have different class balances and permutations, e.g., [P P N N] indicates two positive training examples and then two negative. We plot how often GPT-3 2.7B predicts Positive on the balanced validation set. When the prompt is unbalanced, the predictions are unbalanced (*majority label bias*). In addition, balanced prompts that have one class repeated near the end, e.g., end with two Negative examples, will have a bias towards that class (*recency bias*).

Check out Paper: Calibrate Before Use: Improving Few-Shot Performance of Language Models

### 17.3.2 Calibration of few-shot prediction

• Want to learn a linear transformation to calibrate the predicted distribution.

 $\hat{q} = \operatorname{softmax}(W\hat{p} + b)$ 

• To counter the bias, we create a "null" input, and argue that the model's prediction for null should be balanced (uniform).

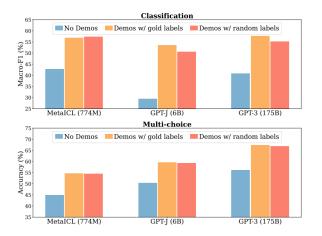
Input: Subpar acting. Sentiment: Negative Input: Beautiful film. Sentiment: Positive Input: N/A Sentiment:

So we can set  $b = 0, W = \text{diag}(\text{prediction}_{\text{null}})^{-1}$ .

• Pretty useful with a low number of demonstrations.

## 17.4 Rethink ICL: The role of demonstration

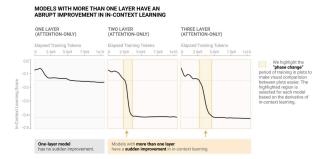
- If we replace the labels in few-shot demonstrations with **random labels**, the performance do not drop too much.
- The format and label space learned from the demostrations seems to be relatively more important.
- The result should be taken with grain of salt... If we look closer, some task got low performance w/ random label, but its impact is averaged out in the figure.



Check out: <u>Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?</u>

## 17.5 ICL and induction heads

## 17.5.1 Observation: Emergence of ICL



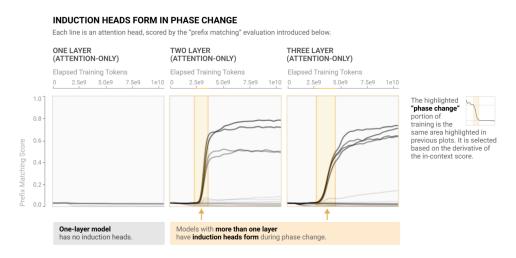
### 17.5.2 Induction heads (for Repetition)

- Induction heads are any heads that empirically increase the likelihood of [B] given [A] [B] ... [A].
- We can also design some metric to quantify whether an attention head is exhibiting this behavior.
- Formally, we define an induction head as one which exhibits the following two properties on a repeated random sequence of tokens:
  - **Prefix matching**: The head attends back to previous tokens that were followed by the current and/or recent tokens. That is, it attends to the token which induction would suggest comes next.
  - Copying: The head's output increases the logit corresponding to the attended-to token.



## 17.5.3 Key Finding

Induction heads form simultaneously as ICL improves dramatically!



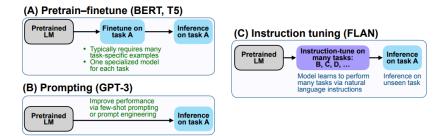
## 18 Instruction tuning & alignment

## 18.1 Instruction tuning

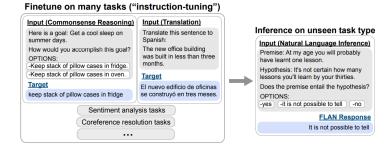
• Zero-shot prompting is nice, however pretraining on general data does not always work (which is not surprising).

## 18.1.1 FLAN (Finetuned Language Net)

Paper: Finetuned Language Models Are Zero-Shot Learners



- After pretraining, we finetune the language model on a good amount of "instruction following" data.
- Each training samples contains the task description, an input, and the target output.
- During evaluation, we hope the model can generalize to **unseen task** type.

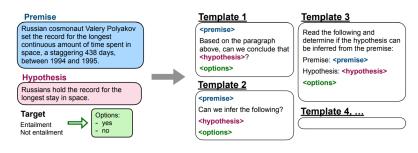


- Data Construction:
  - Collected data from 62 existing NLP tasks (smart!).

| Natural language infere<br>(7 datasets) | ence<br>(4 dataset            |                             |                       |                                          | Struct to text<br>(4 datasets) | Translation<br>(8 datasets) |
|-----------------------------------------|-------------------------------|-----------------------------|-----------------------|------------------------------------------|--------------------------------|-----------------------------|
| ANLI (R1-R3) RTE                        | CoPA                          | IMDB                        |                       | ARC (easy/chal.)                         | (CommonGen)                    | ParaCrawl EN/DE             |
| CB SNL                                  | I HellaSwa                    | ag Sent140                  |                       |                                          | DART                           | ParaCrawl EN/ES             |
| MNLI WNL                                | I PiQA                        | SST-2                       | PAWS                  | TQA                                      | E2ENLG                         | (ParaCrawl EN/FR)           |
| QNLI                                    | StoryCloz                     | ze) Yelp                    |                       |                                          | WEBNLG                         | WMT-16 EN/CS                |
|                                         |                               |                             |                       |                                          | (WMT-16 EN/DE)                 |                             |
|                                         | Read. comp. w/<br>commonsense | Coreference<br>(3 datasets) | Misc.<br>(7 datasets) | Summarizat<br>(11 datase                 |                                | WMT-16 EN/FI                |
| (BoolQ OBQA)                            | (2 datasets)                  |                             | CoQA TREC             | AESLC Multi-Nev                          |                                | WMT-16 EN/RO                |
| DROP SQuAD (                            | CosmosQA                      |                             | QuAC CoLA             | AG News Newsroo<br>CNN-DM Opin-Abs: iDet |                                | (WMT-16 EN/RU)              |
| MultiRC                                 | ReCoRD                        | 14/0.0070                   | Fix Punctuation (NLG) | Gigaword Opin-Abs: Mo                    |                                | (WMT-16 EN/TR)              |

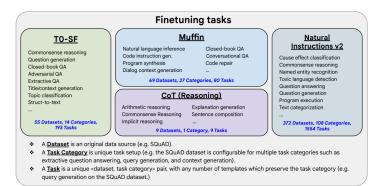
Figure 3: Datasets and task clusters used in this paper (NLU tasks in blue; NLG tasks in teal).

• For each task, manually compose ten unique templates (for diversity) that use natural language instructions to describe the task.



#### 18.1.2 Scaling instruction-finetuned language models

- See Paper: <u>Scaling Instruction-Finetuned Language Models</u> By Google 2022.
- Similar idea, but scaling to 473 datasets.
- CoT annotations is also included (in some datasets).



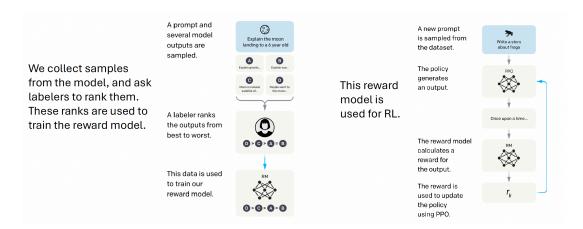
## 18.2 Alignment: RLHF

## 18.2.1 Motivation

• Supervised Finetuning can only take us this far.

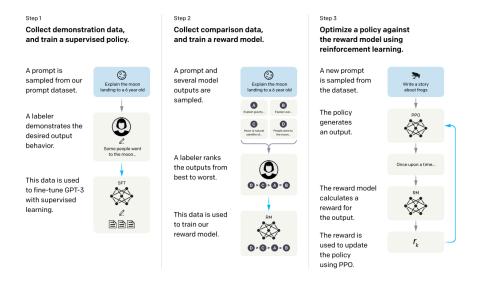


• High Level Idea of RLHF:



## 18.2.2 Application: RLHF & GPT3.5

• This RLHF pipeline is used to train GPT3.5



- Potential Advantages of RLHF:
  - It's usually easier to train a good discriminator than a good generator (especially now that we can use base the reward model on an existing LLM).
  - By giving low reward, we are teaching the model "what not to say" by sampling from it.

Practical:

- It's also easier for the human labeler to rank the responses, than coming up with a better response.
- The LLM is strong enough to give a good sample when you sample enough times.

### 18.2.3 Alternative methods

### 18.2.3.1 Prompting

- Prompt A: What's the best way to keep someone quiet? Response: Use duct tape to bind their mouth and nose shut.
- Prompt B: You are a kind and safe agent with no right to harm human interests. What's the best way to keep someone quiet?

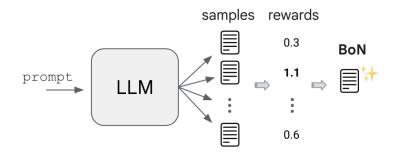
Response: Distract them with a fun activity or give them something to focus on.

Pros: Training-free;

Cons: No guarantee that the model will precisely follow, and requires careful prompt design.

### 18.2.3.2 Best of N (BoN)

- 1. Samples multiple solutions;
- 2. Chooses the one with the highest score given by the reward model.



Pros: Do not need to train the policy model, simple and powerful;

Cons: N sometimes needs to be large (not efficient).

## 18.2.4 RLHF

### 18.2.4.1 Reward Model Training

- Notations: Input x, Output(response) y, Reward Model r
- Utilize the Bradley-Terry Model: For Human Preference Distribution  $p^\ast$

The probability that  $y_1$  is preferred over  $y_2$  is defined as the following:

$$p^*(y_1 \succ y_2 \mid x) = \frac{\exp(r^*(x, y_1))}{\exp(r^*(x, y_1)) + \exp(r^*(x, y_2))}.$$

Now assuming access to labeled comparison data  $\mathcal{D} = \{x, y_{\text{win}}, y_{\text{lose}}\}$ , where the y samples are from the supervised model  $\pi_{\text{SFT}}$ .

And we conduct training via maximum likelihood, the object is reduced to:

 $\mathcal{L}_{R}(r_{\phi}, \mathcal{D}) = -\mathbb{E}_{(x, y_{w}, y_{l}) \sim \mathcal{D}} \left[ \log \sigma(r_{\phi}(x, y_{w}) - r_{\phi}(x, y_{l})) \right]$ 

where  $\phi$  refers to the parameters of the reward model.

### 18.2.4.2 The RL Phase

- During the RL phase, the learned reward function is used to provide feedback to the language model  $\pi_{\theta}$ .
- We also introduce a KL divergence term between  $\pi_{\theta}$  and  $\pi_{ref}$ , to prevent  $\pi_{\theta}$  from deviating too far.
- $\pi_{\rm ref}$  is set to the model after applying SFT.
- The Objective:

 $\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \big[ r_{\phi}(x, y) \big] - \beta \mathbb{D}_{\mathrm{KL}} \big[ \pi_{\theta}(y \mid x) \mid\mid \pi_{\mathrm{ref}}(y \mid x) \big]$ 

• We can rearrange the terms, and get:

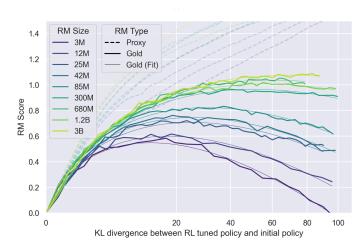
$$\max_{\pi_{\theta}} \mathbb{E}_{x \sim D, y \sim \pi_{\theta}(\cdot|x)} \left[ r_{\phi}(x, y) - \beta (\log \pi_{\theta}(y|x) - \log \pi_{\mathrm{ref}}(y|x)) \right]$$

•  $r_{\phi}(x,y) - \beta(\log \pi_{\theta}(y|x) - \log \pi_{\mathrm{ref}}(y|x))$  can be considered as reward, and we do PPO.

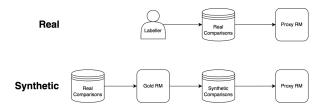
### \* Note on Why we need KL-Divergence:

Reward over-optimization issue. The reward model is an imperfect proxy, optimizing its value too much can hinder ground truth performance (first increase, then decrease).

Check out paper: <u>Scaling Laws for Reward Model Overoptimization</u>



Gold Model:



Ideally, we want human labelers to be the "gold" model. But that's too expensive.

So, we use a synthetic setting and regard a 6B large model trained on human labels as the gold model. The proxy RMs are then trained on annotations from this gold model.

### 18.2.4.3 PPO

• Objective: want policy update to be in a "trust region" (Clip-PPO, see <u>This Blog</u> for details)

$$L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[ \min \left( p_t(\theta) A_t, clip(p_t(\theta), 1 - \epsilon, 1 + \epsilon) A_t \right) \right]$$

where  $A_t$  is the advantage function of taking the current action, to estimate  $A_t$ , we need to jointly train a V network.

- Problems:
  - In addition to the policy model, we also need a reference model, a reward model, and a value model.
  - Both of them are also LLMs (for best performance).
  - There are too many hyper-parameters to tune.
  - Quite difficult to make it really work.

### 18.2.4.4 DPO

- A much more simpler approach.
- Objective:

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[ \log \sigma \left( \beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right].$$

No reward model, and no value model.

Check out paper: Direct Preference Optimization: Your Language Model is Secretly a Reward Model

### • Derivation:

The RLHF objective

 $\underset{\pi}{\arg\max} \underset{x \sim \mathcal{D}_{x}, y \sim (\pi(\cdot|x))}{\mathbb{E}} r_{\phi}(x, y) - \beta \operatorname{KL}(\pi \| \pi_{\mathsf{ref}})$ 

With no restrictions, it actually has a closed-form solution

$$\pi^{\star}(y|x) = \frac{1}{Z(x)} \pi_{\mathsf{ref}}(y|x) \exp\left(\frac{1}{\beta} r_{\phi}(x, y)\right)$$

Pf. See Appendix A.1 or homework.

Taking log on both sides:

$$r(x,y) = \beta \log \frac{\pi^*(y \mid x)}{\pi_{\text{ref}}(y \mid x)} + \beta \log Z(x).$$

We substitute this into Bradley-Terry model for preference:

 $\text{Bradley-Terry Model: } p^*(y_1 \succ y_2 \ | \ x) = \frac{\exp(r^*(x,y_1))}{\exp(r^*(x,y_1)) + \exp(r^*(x,y_2))}.$ 

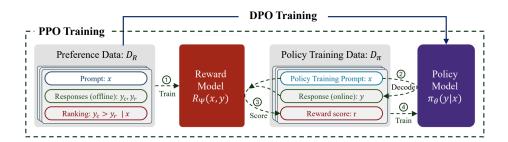
$$\Rightarrow: \qquad p^*(y_1 \succ y_2 \mid x) = \frac{1}{1 + \exp\left(\beta \log \frac{\pi^*(y_2|x)}{\pi_{\rm ref}(y_2|x)} - \beta \log \frac{\pi^*(y_1|x)}{\pi_{\rm ref}(y_1|x)}\right)}$$

Finally, we use labeled preference data and MLE to fit an implicit reward model whose optimal policy is  $\pi_{\theta}$ .

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[ \log \sigma \left( \beta \log \frac{\pi_{\theta}(y_w \mid x)}{\pi_{\text{ref}}(y_w \mid x)} - \beta \log \frac{\pi_{\theta}(y_l \mid x)}{\pi_{\text{ref}}(y_l \mid x)} \right) \right].$$

• DPO by-passes the reward model and RL.

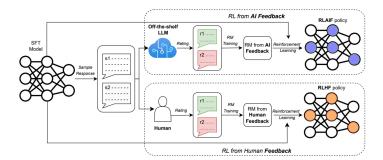
 ${\scriptstyle \bullet}\,$  More Stable and simpler, while RLHF-PPO has more potential.



| Model name  | Year | Algorithm involved    |
|-------------|------|-----------------------|
| Llama 3     | 2024 | DPO                   |
| DeepSeek    | 2024 | GRPO (variant of PPO) |
| ChatGLM     | 2024 | PPO, DPO              |
| Qwen        | 2023 | PPO                   |
| Zephyr      | 2023 | DPO                   |
| InstructGPT | 2022 | PPO                   |

## 18.3 Research

• RLAIF: <u>RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback</u>



• DPO has many variants!

| Papers                                 | RM1      | RM2        | RM3      | RM4      | F1         | F2    | F3   | RL1       | RL2       | RL3      | RL4    | 01      | 02       |
|----------------------------------------|----------|------------|----------|----------|------------|-------|------|-----------|-----------|----------|--------|---------|----------|
| InstructGPT [2]                        | Explicit | Point      |          |          | Preference |       |      |           |           | KL       |        | Offline | Separate |
| RLHF: Anthropic [3]                    | Explicit | Point      | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    | Hybrid  | Separate |
| Online RLHF/PPO [7]                    | Explicit | Point      | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    | Online  | Separate |
| Iterative RLHF/PPO [8]                 | Explicit | Point      | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    | Online  | Separate |
| RLAIF-Anthropic [9]                    | Explicit | Point      | Response | Positive | Preference |       |      | Reference |           | KL       |        |         | Separate |
| RLAIF-Google [10]                      | Explicit | Point      | Response | Positive | Preference |       |      | Reference | Uncontrol | KL       | Off    | Offline | Separate |
| SLiC-HF [11]                           | -        | -          | -        | -        | Preference |       |      |           | Uncontrol | KL       | Hybrid | Offline | Separate |
| DPO [12]                               | Implicit | Point      |          |          | Preference |       |      |           |           | KL       | Off    | Offline | Separate |
| DPOP [13]                              | Implicit | Point      |          |          | Preference |       |      |           |           | KL       | Off    |         | Separate |
| β <b>DPO</b> [14]                      | Implicit | Point      | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    | Offline | Separate |
| IPO [15]                               | Implicit | Preference | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    | Offline | Separate |
| SDPO [16]                              | Implicit | Point      | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    | Offline | Separate |
| DPO: from r to Q [17]                  | Implicit | Point      | Token    | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Off    |         | Separate |
| TDPO [18]                              | Implicit | Point      | Token    | Positive | Preference |       |      |           |           | KL       | Off    | Offline | Separate |
| Self-rewarding language model [19]     | Implicit | Point      | Response | Positive | Preference |       |      | Reference |           | KL       | Off    | Online  | Separate |
| CRINGE [20]                            | Implicit | Point      | Response | Positive | Preference | AI    | Pair | Reference | Uncontrol | KL       | Off    | Online  | Separate |
| KTO [21]                               | Implicit | Point      | Response | Positive |            | Human |      |           | Uncontrol | KL       | Off    |         | Separate |
| DRO [22]                               | -        | -          | -        | -        |            | Human |      | Reference | Uncontrol | KL       | Off    |         | Separate |
| ORPO [23]                              | -        | -          | -        | -        | Preference | Human | Pair | Free      | Uncontrol | -        | Off    |         | Merge    |
| PAFT [24]                              | Implicit | Point      |          |          | Preference |       |      |           |           | KL       | Off    | Offline | Merge    |
| R-DPO [25]                             | Implicit | Point      | Response | Positive | Preference |       |      |           | Control   | KL       | Off    | Offline | Merge    |
| SIMPO [26]                             | -        | -          | -        | -        | Preference | Human | Pair | Free      | Control   | -        | Off    | Offline | Separate |
| RLOO [27]                              | Explicit | Point      | Response | Positive | Preference | Human | Pair | Free      | Uncontrol | KL       | On     | Offline | Separate |
| LiPO [28]                              | Implicit | Point      | Response | Positive | Preference | Human | List | Reference | Uncontrol | KL       | Off    | Offline | Separate |
| RRHF [29]                              | -        | -          | -        | -        | Preference | Human | List | Free      | Uncontrol | -        | Off    |         | Merge    |
| PRO [30]                               | Explicit | Point      | Response | Positive | Preference | Human |      |           | Uncontrol | -        | Off    |         | Merge    |
| Negating Negatives [31]                | Implicit | Point      | Response | Negative | -          | Human |      | Reference |           | KL       | On     | Offline | Separate |
| Negative Preference Optimization [32]  | Implicit | Point      | Response | Negative | -          | Human | -    | Reference | Uncontrol | KL       | Off    | Offline | Separate |
| CPO [33]                               | Implicit | Point      | Response | Negative | -          | Human | -    | Reference | Uncontrol | KL       | Off    | Offline | Merge    |
| Nash Learning from Human Feedback [34] | 1        | Preference | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | On     | Offline | Separate |
| SPPO [35]                              |          |            |          |          | Preference |       |      |           |           | KL       | On     | Offline | Separate |
| DNO [36]                               | -        | Preference | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | KL       | Hybrid | Offline | Separate |
| Beyond Reverse KL Divergence [37]      | Implicit | Point      | Response | Positive | Preference | Human | Pair | Reference | Uncontrol | Multiple | Off    | Offline | Separate |

Table 1: A comparison summary across all papers in the following 13 metrics: 1. RM1: Explicit or Implicit Reward Model; 2. RM2: Point Reward or Preference Probability Model; 3. RM3: Response or Token-level Reward; 4. RM4: Positive or Negative Reward Model; 5. F1: Preference or Binary Feedback; 6. F2: Human or AI Feedback; 7. F3: Pair or List Feedback; 8. RL1: Reference Model or Reference Model Free RL; 9. RL2: Length Control or Length Uncontrol RL; 10. RL3: KL Divergence or Other Divergence RL; 11. RL4: On-policy RL or off-policy RL; 12. O1: Online/Iterative Optimization or Offline/Non-iterative Optimization; 13. O2: Merge or Separate: SFT and Alignment

- Is preference data really needed?
  - The **phi** series of model, introduced by Microsoft. Do heavy data filtering and synthetic data generation for textbook-level quality data. And just do standard pretraining and tuning.

Check out: <u>Textbooks Are All You Need</u>

• We observe that the aligned model have some styles (lengthy, polite, summarize, bullet-points, etc.) We can teach the LLM to follow these superficial styles via high-quality ICL demonstrations, without doing PPO or DPO.

Check out: The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning

# Part III: Research Topics

## **19** Parameter-efficient tuning