Natural Language Processing
Lecture Notes

KnightNemo
Instructed by TianXing He

0.1 Logistics
Homework A(mainly theory, 20pts)

Homework B(mainly coding, 20pts)
In-class Exam(20 pts)
Project(40pts, outstanding porjects get +5 bonus)

0.2 Scoring thresholds
e A+:94-100

e A:89-93

A-: 84-88

o B+: 80-83

0.3 Reference

¢ [SLP] Speech and Language Processing—Jurafsky&Martin
e [INLP] Introduction to Natural Language Processing—Eisenstein

Part I: NLP before LLM

1 Context-Free Grammar(CFG)
1.1 Terminology

We will start with the symbol “S”.

/ S>T+T|T-T|T*T|T/T
To>x|y|112]...19
Start symbol / \

I Terminals

Non-terminals Production rules saying how each non-

terminal can be replaced by a string of

terminals and non-terminals.
Given G as a CFG.
The language of G, denoted as L(G), is the set of strings derivable by G (from the start symbol).
A language L is called a context-free language (CFL) if there is a CFG G such that L = L(G).



Theorem : Every regular language (regular expressions, regex), is context-free.

CFG example: Natural Language

Grammar Rules Examples
S — NPVP I + want a morning flight
NP — Pronoun I

| Proper-Noun Los Angeles
| Det Nominal a + flight
Nominal — Nominal Noun  morning + flight

| Noun flights
VP — Verb do

|  Verb NP want + a flight

| Verb NP PP leave + Boston + in the morning
PP — Preposition NP from + Los Angeles

1.2 CNF

Def. Chomsky normal form (CNF) A CFG is in Chomsky normal form (CNF) if it is e- free and
if in addition Chomsky normal form each production is either of the form A — B C or A — a.

1.3 Parsing

Given a CFG, syntactic parsing refers to the problem of mapping from a sentence to its parse tree.

S

PN

NP VP

T

Pro Verb NP

N

I prefer Det Nom

N

a Nom Noun

Noun  flight

morning



1.3.1 CKY Parsing
Transfer the CFG to CNF, then dynamic programming.

function CKY-PARSE(words, grammar) returns table

for j < from 1 to LENGTH(words) do
forall {A|A — words[j| € grammar}
table[j — 1, j]<table[j—1,j]UA
for i < from j —2 down to 0 do
fork<—i+1toj—1do
forall {A|A — BC € grammar and B € tableli,k] and C € tablelk, j]}
tableli.j] < tablelij] U A

Book the fight  through  Houston
£ Grammar £y in CNF.
S, VP, Verd) SVPX2 S NPVP 5o NPVP
Nominal, S - AuxNPVP S5 XIVP
Noun A X1 -5 AuxNP
(0.1 (0.2) [0. 4] 0.5 Book the fight thuugh Houst fon S VP S = book| include | prefer
et ——N NP s v sV s S - Verb NP
Noom
"L‘ J ) ]
[12] [1.3] [14] o
Nominal, Nominal
Noun
23) 124] 28]
Prep | PP
Verb NP
VP~ Verb NP PP
B4 (3.5)
NP, —— VP = Verb PP
Proper- VP - VP PP
Noun PP 5 Preposition NP PP 5 Preposition NP
4.

_
Order of computation

Abb. 1: Procedure of CKY-Parsing and Results

1.3.2 Limitation

Ambiguity
S S
/\ /\
NP VP NP VP
N T
Pronoun Verb NP Pronoun VP PP
N N N
I shot  Det Nominal 1 Verb NP in my pajamas
/\ ‘
an  Nominal PP shot Det Nominal
PN |
Noun  in my pajamas an Noun
|
elephant elephant

1.3.3 Probabilistic context-free grammars (PCFG)
A — B C with probability 0.4
A — D E with probability 0.6

A corpus in which every sentence is annotated with a parse tree is called a treebank.



1.3.4 Neural CKY

CKY for computing best parse NP
Compute score for span VLF?
Represent span hrhl

Pl e T i
— T —

i=1 =3

map back to words

[START] Book the flight through Houston [END]

the label NP.

[JTOILBYBE A simplified outline of computing the span score for the span the flight with

2 Latent Semantic Analysis(LSA)

2.1 Term-Document Matrix

e rows are words

e columns are documents

e entries indicate

d d, d;

cat 11 o

W/td = dog o 2 o
the| 20 13 18

how many times word i appears in document j

d, d; ds d,
10 1 o0
11 1 o

22 15 4 20

o rows as |D|-dim word representations
o columns are |V|-dim document representations

# words

# documents

2.2 Normalization

2.2.1 Problem

SVD would pay too much attention to the high-freq words!



2.2.2 TF-IDF normalization

* term frequency (tf):

# of times word i appears in doc j
# of words indocj

* inverse document frequency (idf), smoothed version:

L # of docs + 1 +1
08 (# of docs containing word i + 1)

* count’(i, j) = tf - idf

2.2.3 Pointwise mutual information (PMI)

p(w) = # of times w appears in any document / word count
p(d) = fraction of documents identical to doc d (constant)
p(w, d) = # of times w and d appear together / (# words x # docs)

PMI(i, j) = p(w, d) / (p(w) p(d))
= p(d | w)if p(d) is assumed to be constant

3 Hidden Markov Model (HMM)

3.1 Motivating task
Part-of-speech (POS) tagging

Noun Verb Noun Noun Num Noun
Fed raises interest rates 0.5 percent

3.2 HMM Generation

hidden states — a @ 6 a

observations —

p(Q,0) = p(q1)r(q2191)r(q3192)p(q41q3)p(01191)p(02192)P(031q3)P(04]94)
T Why it’s called Markov...

We denote all hidden-hidden transition probabilities by A , and all hidden- emission probabi-
lities by B.



3.3 The forward algorithm
Notice that

(040, = ) =p(ogla, = 3) D_p(O.r1, 41 = 1)p(g = jlag-1.=1)

We denote p(O.,q, = j) as a(t, j).

a(t, j) = b;(0;) Za(t — 1,)a;

a(l,j) = m;b;(0y)
This is also dynamic programming.

p(0) =) p(0.q,=1i) =) alti)

So the total runtime is O(T'N?).

The forward algorithm gives us p(O), p(O.;,q, = j).
3.4 The backward algorithm
Backward algorithm gives us p(O,q, = i,¢,,1 = J)-

Notice that

P(Opprlay = 1) = Z[p(0t+2:|Qt+1 = 3)P(@e 1 = dlar = 1)p(0p 11041 = J)]
J

which can be rewritten as:

B(t7i) = Z/B(t + 17j)aijbj(0t+l)

J
B(T,i) =1
So we know how to compute:
a(t,i) = p(O., g, = i)
p(t,0) = p(Oyy. | q,=1)



3.5 Combined

Combined we can get
p(O,q;, = 1) = a(t,i)B(t, 1)
P(0,q; = i, qq = J) = alt,i)a;;b;(0p) Bt +1,7)
3.6 Inference: most probable tag sequence
Noting that argmax, (Q|O) = argmaxq(Q, O).
The Vertabi Algorithm:

best Iength t-1 tag seq. endmg ini

max p(0,, 0,1, 4 =j)§= max [ max p(0,1, 0, s 4y = D)}

t—1: Qx 2:

best length-t tag seq. ending 'p(% Jl C]t—l =1)-plo; | CIr J)
inj

which can be rewritten as:

6(.)) = bo) max &(t — 1.i) a;; 6(Ly) = n(j) bfoy)

3.7 Acquiring 7,a,b

o Supervised Learning:(we have labels of q)

e =iy @ =D
i = Pl #sequences
_ . N #(‘I/—1=i’ q1=j)
a;j—p(q,—qu,_n—t)—m
-1 = t—
. g =1i0=w)
b,-(W)=p(o,=w|q,=t)—'#(q—'l)
=

e Unsupervised Learning:

We consider the objective:

logp(0]6) =log > p(0,Q6)
a

then for some distribution ¢(Q), we have:

logp(06) =log Y~ p(0,Q|6) = logZ[q(Q)(OQw] Z{ p(0.Ql0) ]
Q Q) @

Q

applying Jensen’s inequality gives us:

log p(O[0) = logZ{ Z)(C%'a ] > logp(0,Q|6) + Entropy(q(Q)).
q(Q)

For given ¢(Q) the entropy term is fixed, so we need only maximize Zq< Q) logp(O, Q10).

Define ¢(Q) := p(Q|0, 8,,), denote the objective as Q0| 6,,).
Actually



logp(016) = 2¢q(Q@)logp(0,Q16) + KL(q(@)||p(Q10,6)) + entropy(q(Q))

q(Q) =p(Q|0,6)

so when 0 and 6, are close enough, so maximizing Zq@) log p(O, Q) is similar to maximizing the true

objective.
Q(016x) = Zor(Q|0,6;)logp(0,Q16)

= 240(010,60l0g | [ g, ,q.be,(00)

=24;jp(Qr1 = 1,0, =Jj|0,0,)loga;j

+Z¢,;p(Qr = j|0,6,) logb;(o.)

the blue terms can be computed using the forward-backward algorithm.

* Optimize for A (hint: minimize the KL inergepce, blackboard), we got
4 = ZoP(Qe—1 = 1,Q, = J,016)
Y 2:1:,0,*27((2::-1 =1,Q =%,0]6;)"
(This is computed over a set of observations)

* The update rule for B is similar and left for exercise.

4 N-Gram
4.1 Language Model

A Language Model assigns a probability of any sequence of words. So, if W denotes any sequence of
words, W € V*, we have:

> Poy(W) =1
w

e A word token (sometimes we just call it “word”) is a specific occurrence of a word in a text.
e A word type refers to the distinct form of a word, regardless of how many times it appears in a
sentence or text. It is the unique identity of the word.

4.2 Naive Approach: Unigram LM

Assume each word is independent.

Punigram(wl w.wr) = P(w)P(W3) ...P(wr)

Problem:
Punigrm(l study NLP at THU) = Punigmm(I study THU at NLP)

4.3 Bigram, Trigram, N-gram
Consider pairs of words. It’s basically just a table lookup!
Ppi(<bos> NLP we at THU study <eos>)

= P(NLP|<bos>) - P(we|NLP) - P(atlwe) - P(THU|at) - P(study|THU)
- P(<eos>|study)



i want  to eat  chinese food lunch spend
i 5 827 0 9 0 0 0 7
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 7 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

[JPTICRR]  Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

We can extend to tri-gram and N-grams. As we know
T
Pwy.p) = Hp(wi|w1:i—1)’
i=0

So basically N-gram is history truncation
p(w;lwy;1) & p(w;|w;_n_q)-

e special tokens:
» <eos>: end of sentence token
» <unk>: out-of-vocabulary token

4.4 Data Sparsity
E.g. ,,We study anthropology in THU .

count(we study anthropology)
count(we study *)

Pyi(anthropology | we study) =

the probability is near zero. How do we deal with it?

4.4.1 Add-k Smoothing

count(We_,we_qwy) + k
COunt(Wt_zwt_l) + lel

Pori(We | We_awe—q) =

k is hyperparameter that is tuned.

4.4.2 Interpolation

PeriWe | We_aWe_1) = APy We | We_awi_q)
+A2 Py (Welwe_q)
+/13Puni(wt)

where 37 A; = 1.

4.4.3 Backoff

Pli(we | we_awe—q) if count(wy_,we_1we) >0

Piri—goWe | We_awi_yq) =
aWe—aWe—1)Pp; We | we_awe—1) otherwise

4.5 Perplexity

A metric for LM evaluation. Smaller Perplexity means better LM.

log, (P(W))

=21 = o T (A
PPLW) =27,  wherel token_len(W)



5 Word2Vec
5.1 Tasks

5.1.1 Skip-gram
Learn representations that predict the context given a word.

p(We—a|we) p(We_q|we) PWer1lwe) P(Wei2|we)

The quick brown fox jumped over the lazy dog

5.1.2 CBOW (Continous Bag-of-Words)

Learn representations that predict a word given context.

AN N

quick brown fox jumped over

5.2 Parameters to Learn

a 12 -0.1 03 ... 0.1 a 2.1 -0.5 1.3 1.4

aardvark 0.2 07 -04 ... 1 aardvark -04 -0.7 0.5 ware 0.1

able -0.7 0.5 0.6 e <08 able 0.2 0.1 0.4 sap =0T

are 0.1 0.9 0.8 56 0.7 are 0.5 0.8 0.1 e 0.4

zyzzyva | 03 -02 07 ... 04 ] zyzzyva 03 03 02 ... 08
Input embedding matrix Output embedding matrix

5.2.1 Skip-Gram objective

INPUT PROJECTION  OUTPUT

4 e2)
i w(t-1)
/ / .
w(t) >
q )
4 w(t+2)
Skip-gram

The p(out|input) is simply a dot product of corresponding vectors then softmaxed.

. Cxp(uout . winput)
pglout|input) = =——————
PG( | g ) ZUEV exp(uv . winput)

In practice, the window size is a hyperparameter.

10



it is a far ,[far‘ better rest that I]go to , than I have ever known

Loss (NLL) for this Ly = —log pg(wi—2 | x¢) — log pe(wi—1 | 24)

window —log po (w41 | x1) — log po(wesa | 1)

Doing Gradient Descent on this objective yields:

Wy 4 We + 1 (ty — Epy(w|2) [t])

/ N\

Output embedding for What the model thinks is
correct label the correct output

i.e. Move towards pointing in the same direction as the true output embedding minus the expected output
embedding under the model.

5.2.2 CBOW objective

INPUT  PROJECTION  OUTPUT

w(t-2)

wit-1)
SuM

> W

R A

wit+1)

w(t+2)

The desired probability is of the following form (Z is normalizing term):

i S
exp( Uy, * 55 Zj:_s Wy j
Pcmw(%lwm, ""l'tvLs) = 7

In practice, the window size is a hyperparameter.

it is a far , 'Far‘[better' rest that I go] to , than I have ever known

Ly = —log po (@t | T4—2, Tt—1, Te41, Te42)

5.2.3 Trick: Negative sampling (skip-gram version)
The computation of the loss function is expensive:

exp(uy - wy)
logps(y | ) = log > ng(u : )
veV v We

= uy - w; — log| Z exp(uy - wy)
veV

Takes O(V) to compute.

Idea: We turn the prediction into a binary classification task.

For each true pair <x,y>, we sample k negative samples y’.

logo(uy - wy) + ZEyr_p [loga(—uyr - wy)].

11



where o is the sigmoid function, and P, can be a unigram model.

5.3 Word Vector Properties

5.3.1 Linear Word Analogies

WOMAN
QUEENS

/ AUNT
MAN /, KINGS
UNCLE
QUEEN \ QUEEN

KING KING
Wman — Wwoman ~ Wking — Wqueen
Wapple — Wapples ~ Wcar — Wecars

Applications:
o Word embedding initialize + finetuning

Neural .
Classifier Train on small amount of
labeled data.

Word2vec Train on large amount of
mapping unsupervised data.

*

The movie is great.

an useful practice before BERT.
¢ Compositional Morphology

help build embeddings for rare words.

imperfection = im + perfect + ion
- e T
perfectly = perfect + ly.

Word2Vec works better than LSA (empirically).

Part II: Neural Networks & LLMs

6 Brief Review of ML /DL Basics

6.1 KL-Divergence

Di(plg) = / Oop(ae) In @dg; = Zp(x) 1n@

o q() = q(z)

6.2 Multi-Class classification
o Task description: 3-class sentiment classification
» This restaurant is great! — positive
» The food is okay. — neutral
» I hate this dish! — negative
o General Recipe: Encode, Predict, Train
» Encode: an encoder(e.g., a neural network) which maps the input « to a D-dim vector h

12



e.g.,0.1,0.3,-0.5,...

rk)

X:This restaurant is great!

» Predict:
—
W: 3-by-D b: dim-3 z: dim-3

Linear Transformation: z = W¢sh 4 bl

Then we apply sofmax: (map z — Pr(y|x))

softmax(z) = [ :xp (z1) : :xp (2) - :xp (z) }
Zi:l exp (zi) Zi:] exp (z;) Zi:l exp (z;)
SOftmaX(Zi) = L(Zl) 1 S i S k <- k is the number of classes.

- 1exp(z)

» Train:

Cross-Entropy Loss:

Lep =Y —logPr(y = y;|z,)

Update by SGD:

At*1 = 9t — learningrate -E’%LCE(mini — batch{x;,y;})

6.3 Neural Networks
« MLP
¢ Back-Propogation
¢ Dropout Regularization
» Dropout is a regularization technique for neural networks that randomly drops a unit (along with
connections) at training time with probability p
» At test time, all units are present, but with weights scaled by p.
o Parellel Computation

7 Neural Network Language Model
7.1 FeedForward NN LM

e.g. tri-gram neural network version

L= Z(UJH’WH,W)E data log Pr(w;|w;_1,w;_5)

13



P(Wilwi_owi_1)

‘[ Linear & softmax

‘[ Linear & tanh

Different from sentiment classification,output class number is now |V].
¢ Remedy 1: Class-based LM

Idea: cluster words into v/V clusters.

Computation Cost: D|V| — 2DVV

£ = —[log Pr(c,|h) + log Pr(wlc,, h)]

P(c|context) P(w|c, context)

The sub-matrix
of class c

Dim-D h(context)

¢ Remedy 2: Noise Contrastive Estimation
» Training without explicit normalization
» Discriminating between the target token and noise tokens
» Key speed-up: py(w|h) does not need to be normalized (no softmax). NCE training will automatically
normalize it.

Py (w)

kP, (w)
& P (w) + kP, (w)

° Pl (w) + kP, (w)

Jh(ﬂ)zEP; +kEp |log

Check out Paper: [A Fast and Simple Algorithm for Training Neural Probabilistic Language Models
e Limitation FNNLM:
» encodes a very limited context(n-gram)

7.2 Recurrent Neural Network Language Model

7.2.1 Architecture
¢ Encode whole history
o maintain h, which is updated each time step.

P(Wey1|Wyt)

x; = embed(w;)

14


https://arxiv.org/abs/1206.6426

hy = o(Wipz, + Wyphy 1 + )

y, = softmax(W,, h, +b,)

L(w) = ZZ —log Pr(wi|w0,...,i—l)

o W,,,W,, are shared across timesteps(hence Recurrent).

7.2.2 Back-Propogation Through Time(BPTT)

—logP (w4 |wo)

[

l Accumulate!
—

Xy = embed(w,)

BP through time....

e Problem: g—,ﬁ Gradient Exploding/ Gradient Vanishing
o Intuition:

—log P(w; |wow;) logP (w3 |wow;w, ) -108P (Wy|Wowi waw3)

Rough estimation: 1) ignore activation function; 2) only consider L,

Ly

|

heeg ~——— Mg Ry

Win Whn hh
% ~ % t—1
dh, = Oh, Mh

» |[Winl < 1: Gradient Vanishing
> |[Wynll > 1: Gradient Exploding
e Gradient Clipping(for gradient explosion): + is hyperparameter.

. . gl
clip(VL) = mln{l, —}VL
VL],

7.2.3 Parellel Computation

o Parellel across sentences

e Dealing with Variable Sequence Length:
» padding, truncating, masking

Minibatch loss 2* 7 Truncated
| walked my dog. <eos> <pad> <pad> |<pad> <pad>
| have a dog named Minnie, she is very

» Bucketing:

Sort sentences such that similarly lengthed sentences are in the same batch.

15



|

h

7.2.4 Sampling with RNNLM

e autoregressive

| TR

Sample wy Sample w,

P(Ws|wowywy)

¢ RNN for text classification

A Beginning-of-sentence
(BOS) token

Consider last hidden state h; as encoding of the whole sentence. Add a linear classifier head.

7.2.5 LSTM(skipped) & GRU

e Used for gradient vanishing problem

o LSTM Related Blog: [Understanding LSTM Networks/
« GRU(Gated Recurrent Unit)

z = og(Wezy + Ushi1 +b2) 4 Update gate, sigmoid
og(Wrzy + Uphy_1 + b,) 12 Resetgate, sigmoid

hi = ¢p(Whazy + Up(re © hy—1) + bp) tanh
ht =2 ®ht + (1 —2)®hi_1  <-Let’sjust focus on

Tt

gate 1-z

line

Notice that the (1 —z) © h,_; contains no weight matrix, so if z is not near 1, the gradient flows

through.

16


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

7.3 Tricks in Deep Learning

7.3.1 Residual Network
higp = h + F(hy)

weight layer

X
identity

8 More On RNN
8.1 More on AR-LM

¢ autoregressive. We can combine different modules together to form a large neural model.

e.g.
Predict we,q Predict wy,,
GRU GRU
Residual Residual
GRU GRU
We Wet1

8.2 Bi-directional RNN

bi-directional can be useful for some applications(e.g. part-of-speech tagging)

he hitq hito

Xt Xt4+1 Xt+2

¢ Q: Bi-directional RNN for AR-LM?
» Not possible, has future information.
e Q: Bi-directional RNN for sentence-encoding?
> : add a special input to the input.
» Way2: do a max-pooling or mean-pooling of the hidden states.

17



predict

T

pooling

/ \
. mm

[CLS] wy Wr

predict

8.3 Encoder-Decoder model for seq2seq task
e.g. Machine Translation

e Encoder: bi-RNN

e Decoder: uni-RNN

Predict | Predict study Predict at

enc(input) —
g
I T ooy |
() T (at) 23 (study)

Average the encoder’s hidden vectors for the input of the decoder RNN.

8.3.1 Attention!!!
Idea: A single vector is not enough, want to pay attention to different parts of the input in different

timesteps.

High Level Idea:

Predict | Predict study Predict at

attention

T T Tsinghua University T

F() 7E(at) 243 (study)

Implementation: (Cross-Attention)

Predict w44

NEURAL MACHINE TRANSLATION
BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

T T Tsinghua University T

F() 7E(at) =43 (study)

18



e At timestep ¢:

o Calculate alignment score: d, = (h?nC)TWahficl
o Get attention distribution: a; = softmax(a)

o Pass 3 a;h{"™ to the encoder

o W, is shared across timesteps.

At training, optimize L =} —log Py(y;|z;)

8.4 Decoding from a LM

Consider MT task for AR-LM , if we want a whole sentence as output.
The objective is to find argmax, Pryg 1\ (ylz).

8.4.1 Greedy Decoding:

Y, := argmax, PrLM(yt|x7 yL_”’tfl) t=1,2,..
o doesn’t guarantee sequence-level argmax
e Obs. : DP(like Vertabi for HMM) doesn’t work here.(No optimality of sub-problems)

8.4.2 Beam-Search

¢ Maintain a number of beams(i.e. sequence of tokens).

)
'

PRI

D Plysle, 1)

AP(ulz.m)

A P(sle)

e On each time-step:

We expand the current beams, sort them, and only keep the beams with largest log-probability.

8.4.3 BLEU metric for MT

number of n-gram matches in reference

precision,, = - -
L number of n-grams in predicted

fe
brevity-penalty = min ¢ 1,exp ( 1 — el er'ence\
|predicted|
1

4 1
BLEU = brevity-penalty x (H precision”>

n=1

Attention works!

Model BLEU
RNNencdec-50 | 17.82 | No attention
RNNsearch-50 | 26.75
RNNsearch-50* | 28.45

Attention

19



8.5 Back Translation for MT Data Augmentation

¢ Q: Given a decent amount of bilingual data (X,Y’) and a great amount of monolingual data in target
language Y. How can we create more paired data?
e A: Train a backward model: Y — X, and conduct generation on the monoloingual data.

9 Text Classification
Have covered basic DNN/RNN for text classification.

9.1 FastText + FNIN

o Average the (pretrained) embeddings of n-gram features to form the hidden variable.
e Linear layer followed by softmax for classification.

e Very fast (small model). Can run on CPUs. Reasonable performance.

| output l

K
—% > i log(f(BAzy))
| hidden | k=1

9.2 CNN for text classification
e RNN deals with variable lengths
¢ CNN can also do that!

wait -
for -
the -
video

and 3 T
do i

.

n't
rent

L J | y
n x k representation of Convolutional layer with Max-over-time Fully connected layer

sentence with static and multiple fiter widths and pooling with dropout and

non-static channels feature maps softmax output

L |

Xin=X1®X®... 0%, ¢ = f(W-Xgipn_1 +).

20



9.3 Recursive neural networks with tree structure

D Sentiment

(@000 (0009 0000
Tina likes tigers

Build on parse trees. Also check Tree LSTM.

9.4 GLUE tasks

Many natural language understanding (NLU) tasks can be posed as a text classification task. The
General Language Understanding Evaluation (GLUE) benchmark.
a harder set of tasks, which brings SuperGLUE

9.5 Deep contextualized word representation (ELMo)

Embeddings from Language Models

Model: multi-layer bidirectional LSTM

Objective: predict the next word in both directions independently; i.e., left-to-right and right-to-left
Data: 1B word LM data

Downstream: extract output-layer features and add them to existing models (as the input word
embeddings)

Strong Performance on GLUE tasks. Considered pioneers of self-supervised generative pretraining
(e.g., BERT).

10 VAE-LM
10.1 Motivation

In RNNLM, we generate token by token. VAE tries to represent whole sentence using z. We learn a
encoder: g,(z|z) and a decoder(generative model): py(z|z).
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10.2 Generation:
¢ Sample z from prior p(z)
e Sample z from generative model py(z|2)

RNNs work <EO0S>

RNNs work <EO0S> RNNs work

10.3 Training:
The “ELBQO” objective

L(0;2) = —KL(gy(2]2)[p(2)) + Eqy, (2s) [log py(]2)] < logp(x)

Derivation:

p(z) ]
q(z|x)

+ ]Eq(z[‘r) [hl

= Ey(;)n [Inp(z]2)] + /Zq(z|a:)ln qfifl)
= ]Eq(er)[lnp(l"z)] = DI\L[q(Z|$)||p(Z)]

= likelihood — KL

o Reparameterization trick:
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LV (u(X), SN0, D]
I,

z=pu+XON(0,I), we can do back-prop now. Continous Latent Space.

10.4 Optimization Challenge:

In vanilla VAE-LM training, KL term quickly decrease to zero(throwing away latent information).
e KL cost annealing

KL term’s weight gradually increase with training process.
e Input word dropping

P(Wy|wg) P(W,|wowy) P(W3|wowywy)

< pad >

e Bag of words Loss

In parallel, train the decoder network to predict the bag-of-words in the response x as shown in.

| like cats </s>

Recogriton)-—»
(z)
Network =P | [T < | Bk caB  eiiieciicaecaies
iKL(qIIp) Utterance Encoder E
— N:‘T‘; s 7z é ' [T Context Encoder
\ o> : H
H [:] Response Decoder '

E 0/1| Conversation Floor :

11 Subword Tokenization

11.1 Byte Pair Encoding(BPE) Tokenization

Used in GPT, Llama.

o (1) Start with a unigram vocabulary of all characters in the data.

e (2) In the data, find the most frequent pair, merge it, and add to the vocabulary.
e (3) Stop when vocabulary is of pre-determined size (e.g., 50k).

Example:

Data

| ow Vocabulary
lower

newest
widest
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es, est, lo, low...

Vocabulary

lowest—low,est lost— lo,s,t

11.2 Other Approaches
o Word Piece(BERT), sentence piece...

12 Transformers, BERT, GPT

12.1 Transformer
This part omittes lots of details as the author believes he know transformers well enough.

A transformer Block:

— ,’ Ly p —
{el ez legl eq |es
( Add & Norm
) ST e ]

MLP
[ A=} ¥
Add & Norm

12.1.1 Self-Attention
ik,
dim(k,)

a;y = softmax( ),zi = Zj a;;v; Can be computed in Parellel

12.1.2 Multi-Head Attention

Concat

Scaled Dot-Product h
Attention

L | |

[ILinear]}[JLinear]J[JLinear]J
¥V

f

\% K Q

MultiHead(Q, K, V) = Concat(heady, ..., head;,) W
where head; = Attention(QWiQ, KWE vwY)

. . . G C 4
Where the projections are parameter matrices Wi2 S Rd‘“"d"l”l", W,'K € Rd‘“"‘“‘lx'j", VVI-I €
Rdmudclxrit and W() c thr)/dmmlvl'
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12.1.3 Other Designs in the attention block
o FeedForward NN
¢ Residual:

fresidual<x7 F) = F(:E) +x
for self-attention and FFNN.
o LayerNorm:

h — mean(h)

LayerNorm(h) = « - Std(h)

+ 3 (a, S are learned parameters)

» BatchNorm: across samples, same feature;
» LayerNorm: across features, same sample

12.1.4 Position Encoding

(sin(i/100002°1/4 )
€0s(i/100002*1/%)
pi= .
* d
sm(x/lOOOOZ'fd/")
{cos(i/10000%'2/%) )

12.1.5 Learning Rate Warmup and Linear Decay

00014
00012
00010

2 00008

2

]

€ 00006

H

3
00004

00002

00000

[ 2000 4000 6000 8000 10000
Number of Steps

12.2 BERT
Bidirectional Encoder Representations from Transformers
Major Objectives in BERT:

o Masked language modeling (MLM)
¢ Next sentence prediction (NSP)

12.2.1 Masked language modeling (MLM)
o randomly mask (via a [mask] token) 15% of the tokens in each sequence.
o ask the transformer model to predict the masked token on the top layer via standard cross-entropy loss.

went store

o EI’T m - :'I;

| [M] to the [M]
e Problem: not ideal representation for non-masked words

o Heuristic:

» For 10% of the time, we replace [M] with a random token.
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» For another 10% of the time, we do not change the original token.
» O.w., the mask token is used.

12.2.2 Next sentence prediction (NSP)

o add a [CLS] token and ask BERT to predict whether sentence2 is the next sentence of sentencel.
¢ For 50% of the time, a random sentence is used as a negative example.
o Actually not that useful(not used after bert)

NSP Label

[CLS] sentence1 [SEP] sentence2 [SEP]

12.2.3 BERT finetuning
¢ slightly modify the top layers of BERT and tune it ondownstream tasks.

Class

Class

Label Label

A —&
BERT BERT

——

Tok Tok Tok Tok

Tok N

Sentence 1 Sentence 2 Single Sentence
(a) Sentence Pair Classification Tasks: (b) Single Sentence Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC, 88T-2, ColLA
RTE, SWAG

12.2.4 Extensions of BERT

« ALBERT (2019, A Lite BERT ...)

« RoBERTa (2019, A Robustly Optimized BERT ...)

o DistilBERT (2019, smaller, faster, lighter version of BERT)

o« ELECTRA (2020, Pre-training Text Encoders as Discriminators not Generators)
o LongFormer (2020, Long-Document Transformer)

I. ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately):

o Instead of masking the input, our approach corrupts it by replacing some tokens with plausible
alternatives sampled from a small generator network.

e Then, instead of training a model that predicts the original identities of the corrupted tokens, we
train a discriminative model that predicts whether each token in the corrupted input was replaced by
a generator sample or not.

sample
the —> [MASK] —>] L-> the —> > original
chef — chef —> chef —>{ | > original
cooked —> [MASK] —> ?;gf;:ﬂ;oar L-> ate —>| DI(TE‘l:_rér(rZ‘;’?{it)or —> replaced
the —> the —»| small MLM) the —>| > original
meal —> meal —> meal —> > original

¢ Much higher data efficiency(task is defined over all sequence instead of just masked-out ones)
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II. LongFormer
. O(N 2) attention computation cost is expensive for long sequence
o Limit the attention to a small span of tokens to save computation
¢ Sliding Window Attention:

» limit the attention to a sliding window of size w.

» Computation cost: O(N - w)
e Q: For an embedding on layer L, what’s its receptive field?
e At L-w

1!
1
!
1!

(a) Full n? attention (b) Sliding window attention (c) Dilated sliding window (d) Global+sliding window

¢ Dilated Sliding Window:
» Larger receptive field, but miss some local information
» Fix: Multi-Head Attention.

» We can use a combination of 2 heads of dilated and other heads with local sliding window.

12.3 Transformer Decoder & GPTs

o BERT-like models are great for sentence/document encoding or deep contextualized word embedding.
¢ But you can not directly use it for text generation, or infer the log-probability of a given text.
e So let’s talk about transformers for autoregressive language modelling (generation).

12.3.1 Causal Mask

e apply the mask before the softmax operation, so that the attention distribution is still normalized.

Scores Masked Scores

(before softmax) (before softmax) Scores

0.11 0.00 0.81 0.79 0.11 1 0 0 0

Apply Attention Softmax

0.19 0.50 0.30 0.48 Mask 0.19  0.50  -inf -inf (along rows ) 0.48 | 0.52 ) 0

0.53 0.98 0.95 0.14 I 0.53 0.98 0.95 f I 0.31

0.81 0.86 0.38 0.90 0.81 0.86 0.38  0.90 0.25 | 0.26 0.23 | 0.26

12.3.2 GPTs

¢ GPT models are transformer decoders trained for AR-LM.
e generative capability emerged from large-scale training
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GPT-1 GPT-2 GPT-3

d I Transformer Decoders Transformer Decoders Transformer Decoders
Mode (12 Dec;:ﬂ‘er (blocl;'s;ii ?Iasked- (48 Decoder blocks) (48 Decoder blocks)
ention heads
bi . Next word prediction Next word prediction Next word prediction
(@) JeCt|Ve (cross-entropy loss) (cross-entropy loss) (cross-entropy loss)
+  CommonCrawl (410B tokens)
BooksCorpus (11k books .« BooksCorpus + WebText2 (198 tokens)
Data from a variety of genres) |+ WebText (8M web pages) | .  poos es ko
* Wik (3B tokens)
# Parameters 117M 1.58 1758
Improving Language Language Models are Language Models are
Paper Tltle Understanding by unsupervised multitask Few-Shot Learners
Generative Pre-Training learners
Year 2018 2019 2020

I. GPT-1(before BERT, still focused on NLU)
e pretrain a transformer decoder AR-LM on large data, and the finetune it on downstream NLU tasks.
o take the final-layer embedding of the last token in the text, and add a linear classification head.

II. GPT-2
e Zero-shot capability to downstream tasks:
» No finetune
» In generation, it continues the language.
Prompts: Translate the following text to French. Text: [ENG TEXT] French:

» WebText data contains all sorts of data — we are implicitly doing multi-task training during the
pretraining.

e Scaling up can help zero-shot ability

Reading Comprehension Translation Summarization 10 Question Answering
90 {Human 25 |Unsupervised Statistical MT 32 flead3 e
80 330 81 TOpen Domain QA Systems 1 1|
20 T g PaNet
70 w
ProA+PGNet _ 15 |Denoising + Backtranslate - g 26 3
z 60 OrQA e ] £ 24{seqzseq + Attn @
50 10 {Embed Nearest Neighbor 222 <4
PGNet Denoising g Random-3
40 5 EE 2
30 18 most freq Q-type answer|
rrrrrrrrrrrrrrrrrrrr Seqaseq 6 o
117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M117M 345M 762M  1542M
# of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM
¢ Common knowledge
Question Generated Answer Correct  Probability
Who wrote the book the origin of species? Charles Darwin v 83.4%
Who is the founder of the ubuntu project? Mark Shuttleworth v 82.0%
Who is the quarterback for the green bay packers? Aaron Rodgers v 81.1%
Panda is a national animal of which country? China v 76.8%
Who came up with the theory of relativity? Albert Einstein v 76.4%
When was the first star wars film released? 1977 v 71.4%
What is the most common blood type in sweden? A X 70.6%
Who is regarded as the founder of psychoanalysis? Sigmund Freud v 69.3%
Who took the first steps on the moon in 1969? Neil Armstrong v 66.8%
Who is the largest supermarket chain in the uk? Tesco v 65.3%
What is the meaning of shalom in english? peace v 64.0%
Who was the author of the art of war? Sun Tzu v 59.6%
Largest state in the us by land mass? California X 59.2%
Green algae is an example of which type of reproduction? parthenogenesis X 56.5%
Vikram samvat calender is official in which country? India v 55.6%
Who is mostly responsible for writing the declaration of independence? Thomas Jefferson v 53.3%

¢ Open-ended generation
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» Open-ended generation refers to generation tasks that has big freedom and diversity, like story or
news generation.

» very different from translation or summarization, where the generation is like “another version” of
the input.

» The model needs to rely its own (memory, consistency or creativity).

12.3.3 The top-K sampling algorithm
o Direct sampling from PrARV,LM<~ ‘w[m}) can be diverse but has poor quality or consistency.
e Top-K sampling: trade diversity for quality

» Represent P<~ | w[m‘]) by p = (pl, ...,p‘v‘), where p; > ... > pjy.

» Sample W, from p:

p; - 1[i < K]
Z

A

p; =

zu,g\ﬂ-‘“p_“ P(w|“The”, “car”) = 0.99

f_/H

—=
drives s turns stops down a not the small tola

P(w|“The”, “car”)

e Sampling algorithms provide a sweet quality-diversity trade-off.(Essential difference from decoding
e.g. beam search)

13 Rethink MLE, Sampling, and Bad Behavior
13.1 Criticizing teacher forcing (MLE)

13.1.1 Teacher Forcing(MLE)
o The MLE objective: log P(W) =, 10gP<wi|w[1:i71]> where W is from training data.
« However in generation, WM ~ P(W;|W}_,), there may be a distribution shift.

W1 W2 VVl VVH_lﬁTraining
\/"/
p {0, Py
-——/’-’\
w, W, .. W; W, ,4mGeneration

13.1.2 The exposure bias hypothesis:

Due to the exposure to ground-truth prefix, the model is biased to only perform well during training,
but not generation.

Importantly, the error is hypothesized to accumulate during generation, and the generation will be
incrementally distorted.

13.1.3 Language GANs
e This belief in exposure bias motivates Language GANs.

e In GAN, no teacher forcing, training is directly applied to model samples.
¢ GAN example in CV:
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mGin max V(D,G) = Egnpyu (@) log D(x)] + E,p, (2)[log(1 — D(G(2)))].

o However in NLP, not differentiable. the gradient can not flow back through discrete sampling.

Solutions:
¢ The Gumbel-softmax reparameterization
¢ The reinforce trick (policy gradient)

13.1.4 The Gumbel-softmax reparameterization

The Gumbel-Max trick (Gumbel, 1954; Maddison et al., 2014) provides a simple and efficient way
to draw samples z from a categorical distribution with class probabilities 7:

z = one_hot (arg max [g; + log ’/Tl]) (1)

where g ...gy, are i.i.d samples drawn from Gumbel(0, 1)!. We use the softmax function as a continu-
ous, differentiable approximation to arg max, and generate k-dimensional sample vectors y € AF~!

where

yi = exp((log(mi) + 9:)/7) fori=1,..., k. )

Sk exp((log(my) + g;)/7)

One practice is to anneal 7 from large to small during training.

Categorical 7=0.1 7=10.0

o ol la L
Ll

category

a)

on

expectati

sample

e Straight-Through Trick:
Sometimes we want our encoding to really be one-hot during training.
Do argmax to get the one-hot vector, y_hard

ret = y hard - y soft.detach() + y soft, returns the ont-hot vector, but the gradient only flows
through the soft part in back-prop.

13.1.5 The Reinforce Trick
arg;nax Ey«ng(y\m)[r(m’y)]

Vo IEwag (y|x) [T(wv y)]

=V ) r(z,y)P(y|=)
Y

= r(@,y)VeP(y|z)

y Volog Py(-) = VIGJP(H()‘)
> e
= r(@y) Py | x)Volog Py(y | )
Y

=By p(y|e) [r(@,y)Velog Py(y | z)]

Examples of Language GANs:
. SquAN: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

Reported better generation quality than MLE baseline.

However, for MLE baselines, we can tune the temperature to tradeoff quality and diversity.
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5 — exp(log(p;)/T) .
> exp(log(p;)/T)

Check out Language GANs Falling Short

Results: Language GANs are actually worse than the MLE baseline. (NLL test represents diversity, NLL
oracle represents quality.)

12
CoT —
SeqGAN ——
" LeakGAN ——
- RL-GAN ——
310 MLE —
j
zZ
9
8
6 7 8 9 10 11
NLL oracle

Figure 3: Effect of temperature tuning on the
global metrics (lower is better for both metrics)
for the synthetic task.

TakeAway:
e Language GAN is a great idea,but GAN training is notoriously unstable.
e MLE training 4+ sampling algorithm is an amazing combination.

13.2 Sampling algorithms

13.2.1 Top-k Sampling

13.2.2 Nucleus(top-P):

13.2.3 Tempered (T)

Check out: 4 Systematic Characterization of Sampling Algorithms for Open-ended Language Generation

13.2.4 Common Features of these three sampling methods
e The order of elements are preserved:

P 2P =D = Dj
e The entropy of the distribution are reduced
J(p) < H(p)
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e The slope of the non-zero elements are preserved:

logp; —logp;  logp; —logp;
logp; —logp, logp; —logp,

Hypothesis:[See Paper for details)

o Sampling algorithms that satisfy all three properties should be at least as good as the top-k/nucleus/
tempered sampling in the Q-D trade-off.

o Sampling algorithms that violate at least one of the properties won’t be as good.

Take-away: What matters is not the details of how the algorithm is designed, but the high-level principles
(properties) on which it is based on.

13.3 Correcting bad behavior of NLG models

13.3.1 Biased decoding
¢ Motivation: Discourage repeating token

p; = exp(z:/(T"- 1 € 9)) I(c) = @ if cis True else 1

2exp(z;/(T-1(5 € g))

o T is temperation, g refers to the set of generated tokens. In practice, set § = 1.2

13.3.2 Unlikelihood training for repetition

o Explicitly discourage repeating tokens during training

LU 1oken(Po (|2<1),C*) = —a - Z log(1 — po(clz<t)) — log po(zi|z<s) -
————

cect likelihood
unlikelihood

where Gf)rev—COIlteXt = {'rla ceey xt—l} \ {xt}

13.3.3 The MMI criterion

o Motivation: To discourage generic responses in chatbot(e.g. “I don’t know”, “I'm ok”)
o Usual Objective:

T = arg mj@x{logp(T\S)}

e Maximum (pointwise) Mutual Information (MMI) Objective:

We compares the probability of two events occurring together to what this probability would be if the
events were independent:

max log 2 T)
T p(S)p(T)
which can be formulated as

T = arg qu}x{logp(T\S) —logp(T)}.

13.3.4 Training with negative examples

o Motivation: generic response of chatbots

¢ Dynamically count the frequency of decoded response from the model during training, and assign
negated gradients to those most frequent samples (denoted as yneg).

Lossnew = _IOgPG (Yposlxpos) + IOgPG (Yneglxneg)
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13.3.5 Hallucination

o “Hallucinations” refers to seemingly convincing yet factually incorrect text.
e Cover in future lectures

14 Transformer encoder-decoder & RoPE

e Encoder: BERT

e Decoder: GPT

o For seq2seq tasks(e.g. Machine Translation), construct encoder-decoder transformer

14.1 Encoder-Decoder Transformer

14.1.1 Architecture

e Each decoder layer is a self-attention followed by a cross-attention.

I study at THU

FTEEEEE B

Cross Attention

BEBEXRFHS) <s> | study at

e The query vector for a transformer decoder’s cross-attention head is from the output of the previous
decoder layer. However, the key and value vectors are from the encoders’ outputs.
e Pretraining Encoder-Decoder Transformer:

Similar to MLM in BERT (encoder), we can design self-supervised pretraining objective as seq2seq
tasks for encoder-decoder models.

14.1.2 Examples:

o BART: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and

Comprehension

(AlctEY) (DE.ABC.) (c.pE.AB)
Token Masking ~ Sentence Permutation Document Rotation

&
(AcE )y (aBc.0E) 3 (A_D_E)

Token Deletion Text Infilling

BART [Lewis et al. ‘19]

o T'5: Ezploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

Original text

Thank you fef inviting me to your party Jast week.

Inputs

T5 [Raffel et al. “19] Thank you <X> me to your party <V> week.

T:r;szc»r inviting <v> last <z>
o T5 paradigm: text2text
In T5 task-specific finetuning, all tasks (including classification or regression) are converted to a text-
to-text format.

In this way, we do not need to change model architecture for most tasks.

["translate English to German: That is good."

“cola sentence: The
course is jumping well.”

["stsb sentencel: The rhino grazed

"Das ist gut."”
“not acceptable”

'3 g"

on the grass. sentence2: A rhino
is grazing in a field.”

"six people hospitalized after
dispatched emergency crews tuesday to a storm in attala county."

survey the damage after an onslaught
of severe weather in mississippi.."

[ “summarize: state authorities
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14.1.3 From Encoder-Decoder to Decoder-only
Consider multi-round chatbot dialogue scenario,
e Decoder-Only:
» Training and Inference architecture is highly constistent
» Naturally handles variable-length text generation
» During application, we just do natural concatenation (always causal attention). No computation
is wasted (assuming we save hidden states of the history).

R
4 A ‘ i |
R el re et

Deos
~F./'Q_ | (/‘Sé/‘\ | 4_431[7‘,
] \ ] S

¢ Encoder-Decoder:
» In pretraining, we need to build text of variable length, and the training signal is only from the
decoder side.
» During application, we need to re-encode (because the encoder is bi-directional) the whole history
for each dialogue turn.

14.2 Rotary position embedding (RoPE)
e Absolute Embedding;:

Tetetaknt = Wete(gkw) (z; +p;)
k )
2t
10000° c RY
Piot+1 = s1n(

Piot = sin(
b =

2t )
10000

¢ RoPE

» Motivation: want the dot product between query (position m) and key (position n) to directly be a
function of (m — n).

(fo(@m,m), fr.(xn,n)) = 9(Tm, Tn,m —n).

» 2D-case:

_ ([ cosmf —sinmb W{(;lk)} W{(fk)} 2D
Ftamy@mom) = Gumo  cosmo w2 (2)
{a,k} {a,k}

» General Form:
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Fawy(@m.m) = RS W (4 1y @m

where
cosmbf; —sinmb; 0 0 0 0
sinmf;  cosmb; 0 0 0 0
0 0 cosmbly —sinmby 0 0
RL — 0 0 sinmfs  cosmbsy 0 0
©,m .
0 0 0 0 <o cosmbg,  —sinmbg/
0 0 0 0 --- sinmbyp  cosmby)e

(14)

15)

is the rotary matrix with pre-defined parameters © = {0; = 10000720~/ ¢ [1,2,...,d/2]}. A graphic illustration

of RoPE is shown in Figure (1). Applying our RoPE to self-attention in Equation (2), we obtain:

atk, = (R‘é_qumm)T(R%,anm") = mTWng—),n—kamn

» Intuition:

=
&

eovrces [ELTHED -+ TR

Transformer [T 1] -+~ (CITIEIE
with [T -+ (W=
Rotary [T -+ (I 11
position [T -+ [ IHIE] o -
Embedding [T -+~ (10 6 Irr

Query / Key Positior Position E

1006,

T

Figure 1: Implementation of Rotary Position Embedding(RoPE).

» adopted in the latest LLaMA models

15 GPT-3 & In-Context Learning
15.1 Scaling Law of LMs

15.1.1 Data Composition of GPT-3
o Common Crawl (webpages)
o High quality data (such as Wiki) is intentionally repeated multiple times.

15.1.2 Scaling Law

Is require fewer samples

same performance

Test Loss

Tokens Processed Compute (PFsdays)

e Model Size grow faster than need for Data

E 108 Minimum serial steps eg‘é Data requirements
=1 increases negligibly — —~ | 6\‘5‘ grow relatively slowly
=] &
= 108 # 2 W12
é AS 0“‘5
s AOOF
Z 10% i i
=] 7€ Optimal model size
§ \.hode\s increases very quickly
S 102 00000
El SAS
b

10°

10-8 10-6 10+ 10-2 10°

Compute (PF-days)
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15.2 GPT-3 & In-Context Learning
e LM perplexity improves

15.2.1 In-Context Learning
e So far, “learning” usually refers to gradient update with labelled data (classification or seq2seq
tasks).

¢ Now, we only want to construct some prompt (also called context or prefix) and ask the LM to do

continuation.
e Prompt Example

“Please negate the meaning of the sentence. [<- task description, optional] I hate NLP => I love NLP;
Today’s weather is good => Today’s weather is bad; [<- the demonstrations] I had a good day => [<-
the example for testing (output)]”

o Performance on SuperGLUE (32-shot ICL)

SuperGLUE Performance

Human —8— Zero-shot
%0 Fine-tuned SOTA —&— One-shot
—8— Few-shot (K=32)

80

o
g
& Fine-tuned BERT++
w 70 Fine-tuned BERT Large
3
G}
b=
o
f=3
3 60
50
Random Guessing
40
0.1 04 08 13 26 6.7 13 175
Billions of Parameters in LM
o Reasons:

» Mostly unclear.
» GPT-3 Paper’s Explanation:

“During unsupervised pre-training, a language model develops a broad set of skills and pattern
recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task.”

15.2.2 Terminology of GPT-3

e Zero-shot:

Translate English to French: task description

cheese => prompt

e Few-shot (< ICL):

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

o Finetuning:
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sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N

cheese => prompt

15.2.3 Few-shot learning before GPT3: MAML

¢ Before GPT3, few-shot learning still refers to how a model can quickly adapt to a new task demons-
trated with only a few examples via gradient update.

¢ We have a meta-learning phase on a wide set of tasks. In effect, the meta-learning problem treats

entire tasks as training examples.

Check out Paper: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Chelsea Finn!

o Assuming each sub-task has a (small) few-shot train-set and a (smaller) dev-set.
e In the inner loop of each sub-task, we update to a pseudo 6.
¢ In the outer loop, we compute real gradient on the dev-set loss with 6. So the real gradient involves

second-order term (why?).

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(7): distribution over tasks
Require: o, 3: step size hyperparameters
1: randomly initialize ¢
2: while not done do
3:  Sample batch of tasks T; ~ p(7T)
4 for all 7; do
5: Evaluate VL7, (fs) with respect to K examples
6 Compute adapted parameters with gradient de-
scent: &, = 6 — aVoLr;(fo)
7:  end for
8: Update 8 + 0 — Vg ZTzwp(T) L, (fg;)
9: end while

15.2.4 GPT-3 on NLP-community
e Not Open-sourced

— meta-learning

9 ---- learning/adaptation
VL
VL,
V,Cl e '93
Y

Figure 1. Diagram of our model-agnostic meta-learning algo-
rithm (MAML), which optimizes for a representation 6 that can
quickly adapt to new tasks.

o API calls for prompted generation. API calls for finetuning ain’t that useful.
¢ Research focus changes to building good prompts
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16 Chain-of-Thought(CoT) Prompting
16.1 Idea

In the few-shot demonstrations, add reasoning steps before giving the answer. These reasoning steps are
manually written by humans.

Standard Prompting Chain-of-Thought Prompting

\

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

\

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many

tennis balls does he have now?
A: The answer is 11.
Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples
do they have?

N

tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples
/| dothey have?

A: The answer is 27. x A

\answer is9. o/

Check out Paper: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

16.2 Results

e CoT is an emergent ability of model scale. That is, its impact is more pronounced when the model

large (~ 100B).

16.3 Zero-Shot CoT

Check out Paper: Large Language Models are Zero-Shot Reasoners

(a) Few-shot

@oger has 5 tennis balls. He buys 2 more cans of terQ

balls. Each can has 3 tennis balls. How many tennis balls does
he have now?
A: The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A

(b) Few-shot-CoT

ﬁRoger has 5 tennis balls. He buys 2 more cans of terﬁ
balls. Each can has 3 tennis balls. How many tennis balls does

he have now?
A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6
tennis balls. 5 + 6 = 11. The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A:

(Output) The answer is 8. X

\ /

(c) Zero-shot

(Output) The juggler can juggle 16 balls. Half of the balls are golf

blue. So there are 8/ 2 = 4 blue golf balls. The answer is 4. v/

Qﬂs. So there are 16 / 2 = 8 golf balls. Half of the golf balls are

(d) Zero-shot-CoT (Ours)

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: The answer (arabic numerals) is

Q: A juggler can juggle 16 balls. Half of the balls are golf balls,
and half of the golf balls are blue. How many blue golf balls are
there?

A: Let’s think step by step.

(Output) 8 X

(Output) There are 16 balls in total. Half of the balls are golf
balls. That means that there are 8 golf balls. Half of the golf balls
are blue. That means that there are 4 blue golf balls. v/
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¢ Chaining of two prompts:

[1st prompt]
Reasoning Extraction

[2nd prompt]
Answer Extraction

Q: On average Joe throws 25 punches per
minute. A fight lasts 5 rounds of 3 minutes. How
many punches did he throw?
A: Let's think step by step.
In one minute, Joe throws 25 punches. - -+
@ rounds, Joe throws 5 * 75 = 375 punches. .

Q: On average Joe throws 25 punches per
minute. Afightlasts 5 rounds of 3 =+«
A: Let's think step by step.

-

In five

LLM ! Therefore, the answer (arabic numerals) is
1
- / Ve
/ LLM
In one minute, Joe throws 25 punches. )
In three minutes, Joe throws 3 * 25 = 75 punches. @
In five rounds, Joe throws 5 * 75 = 375 punches. [ 375. ]

Figure 2: Full pipeline of Zero-shot-CoT as described in §\3} we first use the first “reasoning” prompt
to extract a full reasoning path from a language model, and then use the second “answer” prompt to
extract the answer in the correct format from the reasoning text.

This ability is also emergent with model size.

16.4 Intuitions behind why CoT works

e Divide and conquer
o Reasoning steps take more computation, giving LM more time to think.

17 More (Research) on CoT & ICL
17.1 CoT with self-consistency

e For CoT, we could sample multiple reasoning path from the LLM with temperature sampling.
¢ And then take a majority voting over the answers!

Greedy decode

. ~ [ " ( This means she uses 3 + 4 = 7 eggs every day.
Chain-of-thought (5 oo | | Language | | She selisthe remainder for $2 per egg, soin
sromng 2 [prompt | Longge || S e (remmmrics )
|_The answer is $14.

N J
Self-consistency ﬁ Sample a diverse set of Marginalize out reasoning paths

reasoning paths to aggregate final answers
/u fthere are 3carsin the parking
lot and 2 more cars arrive, how many
cars are in the parking lot?
A: There are 3 cars in the parking lot | [t
already. 2 more arrive. Now there are | (T ————— .

3+2=5cars. The answer is 5. |
the remainder for $2 per egg. H

——————— 1
{ Shehas16-3-4=9 eggs \
A left. So she makes $2* 9 = I The answer is $18.

$18 per day.

Q: Janet's ducks lay 16 eggs per day.
She eats three for breakfast every
morning and bakes muffins for her
friends every day with four. She sells

| remainder for $2° (16 - 4-3) The answer s $26.
N = $26 per day.
\| Language |/ ) The. -nmr is sm
model She eats 3 for breakfast, o |
much does she make every day?

\ she has 16 - 3 = 13 left. Then

she bakes muffins, soshe | The answer is m
has13-4=9 eggs left. So

NG /’ shehas 9 eggs * $2=$18. | J

17.2 Tree of thoughts (ToT)

¢ Maintain and expand a thought-tree.

o For each existing step, we prompt the LLM the propose multiple next steps, and also to judge which
path (by giving a value) is more promising.

e The nodes that are judged to be unlikely will be discarded.

Input: 491013 4
o - (a) Propose Prompt Thought Generation
. /l\ L= 4+9=13(lefc 10 1313)
44913 g\PUtb:l 9 10 '|3 ] M 10- 4 = 6 (left: 6 913)
et 6913) (leFe101313) ossible next steps: more lines
13-6-7 13-9=4 (b) Value Prompt Thought Evaluation
(lefe 79) efca6) Evaluate if given numbers can (13-10)*13=3*13=39
m reach 24 (sure/likely/impossible) 10+13+13 =36 There is no wa
1014:10+14= Z4 sure IM . . . 4
4+6=10 446=24 r ) to obtain 24 with these big
terc 10 (e 24 TR numbers. impossible

Check out Paper: Tree of Thoughts: Deliberate Problem Solving with Large Language Models
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Expand Nodes in some order:

Algorithm 1 ToT-BFS(z, py, G, k, V, T, b) ) Algorithm 2 ToT-DFS(s, t, pg, G, k, V, T, v.1,)
Require: Input 2, LM pg, thought generator G() Require: Current state s, step t, LM py, thought
& size limit k, states evaluator V' (), step limit T, generator G/() and size limit &, states evaluator
breadth limit b. V (), step limit 7', threshold vy,
So + {z} if ¢ > T then record output G(py, s, 1)
fort=1,---,7 do end if
Sp+— {[s,2] | s € Si—1,2 € G(po, s, k)} for ' € G(po, s, k) do 1 sorted candidates
Vi = V(po, ) if V(po, {s'})(8) > Vinres then > pruning
S; ¢ argmaxscsy,sj=b 2ses Vi(5) DFS(s’,t+1)
end for end if
return G (py, arg maxe g, Vr(s),1) end for

G G G

' l Y MaAontvvole i
a) Input-Output  (c) Chain of Thought (c) Self Consistency (d) Tree of Thoughts (ToT)

Promptmg (10)  Prompting (CoT) with CoT (CoT-SC

17.3 Bias in ICL

17.3.1 Majority and Recency Bias
e The demonstration’s labels and permutation changes the performance

Il p(Positive) r

Probability

PPPP NPPP PNPP PPNP PPPN NNPP NPNP PNNP NPPN PNPN PPNN NNNP NNPN NPNN PNNN NNNN

Unbalanced Balanced Unbalanced
Figure 4. Majority label and recency biases cause GPT-3 to become biased towards certain answers and help to explain the high variance
across different examples and orderings. Above, we use 4-shot SST-2 with prompts that have different class balances and permutations,
e.g., [P P N NJ indicates two positive training examples and then two negative. We plot how often GPT-3 2.7B predicts Positive on the
balanced validation set. When the prompt is unbalanced, the predictions are unbalanced (majority label bias). In addition, balanced
prompts that have one class repeated near the end, e.g., end with two Negative examples, will have a bias towards that class (recency bias).

Check out Paper: Calibrate Before Use: Improving Few-Shot Performance of Language Models

17.3.2 Calibration of few-shot prediction
¢ Want to learn a linear transformation to calibrate the predicted distribution.

G = softmax(Wp + b)

e To counter the bias, we create a “null” input, and argue that the model’s prediction for null should
be balanced (uniform).

Input: Subpar acting. Sentiment: Negative
Input: Beautiful film. Sentiment: Positive
Input: N/A Sentiment:

So we can set b = 0, W = diag(prediction, ;)"
o Pretty useful with a low number of demonstrations.
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17.4 Rethink ICL: The role of demonstration

o If we replace the labels in few-shot demonstrations with random labels, the performance do not
drop too much.

e The format and label space learned from the demostrations seems to be relatively more important.

o The result should be taken with grain of salt... If we look closer, some task got low performance w/
random label, but its impact is averaged out in the figure.

Classification
60 W No Demos Demos w/ gold labels B8 Demos w/ random labels
~55
®
=50
o
" 45
E
S 40
2 35
30
25 MetalCL (774M) GPTJ (6B) GPT-3 (175B)
Multi-choice
70 W No Demos Demos w/ gold labels 8 Demos w/ random labels
65
x®
=60
z
g 55
5 50
<45
40
" MetaICL (774M) GPTJ (6B) GPT-3 (175B)

Check out: Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

17.5 ICL and induction heads

17.5.1 Observation: Emergence of ICL

MODELS WITH MORE THAN ONE LAYER HAVE AN
ABRUPT IMPROVEMENT IN IN-CONTEXT LEARNING

ONE LAYER TWO LAYER THREE LAYER
(ATTENTION-ONLY) (ATTENTION-ONLY) (ATTENTION-ONLY)
Elapsed Trai kens psed Training Tokens
1 We highlight the
1 “phase change”
period of training in plots to
‘ k_ make visual comparision

between plots easier. The

in-context learning

One-layer model Models with more than one
h idde have

in-context learning

17.5.2 Induction heads (for Repetition)
o Induction heads are any heads that empirically increase the likelihood of [B] given [A] [B] .. [A].

e We can also design some metric to quantify whether an attention head is exhibiting this behavior.

¢ Formally, we define an induction head as one which exhibits the following two properties on a repeated
random sequence of tokens:

» Prefix matching: The head attends back to previous tokens that were followed by the current
and/or recent tokens. That is, it attends to the token which induction would suggest comes next.
» Copying: The head’s output increases the logit corresponding to the attended-to token.

attention

Random Tokens Repeat of Random Tokens

Category 40 ids node SHllGHIONl  Category 40 ids|node]|Strliction
prefix of attended-to-token Attended-to-token is copied. The corresponding
= current token {88 is increased for the next token
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17.5.3 Key Finding

Induction heads form simultaneously as ICL improves dramatically!

INDUCTION HEADS FORM IN PHASE CHANGE

Each line is an attention head, scored by the “prefix matching” evaluation introduced below.

ONE LAYER TWO LAYER THREE LAYER
(ATTENTION-ONLY) (ATTENTION-ONLY) (ATTENTION-ONLY)
k la r ) T
The highlighted
“phase change”
portion of
training is the —
same area highlighted in
previous plots. It is selected
- — based on the derivative of
/ the in-context score.
One-layer model Models with more than one layer
has no induction heads. have induction heads form during phase change

18 Instruction tuning & alignment

18.1 Instruction tuning
o Zero-shot prompting is nice, however pretraining on general data does not always work (which is not
surprising).

18.1.1 FLAN (Finetuned Language Net)
Paper: Finetuned Language Models Are Zero-Shot Learners

(A) Pretrain—finetune (BERT, T5)

~
P d Fi on 5 Infe . .
LM '—’ task A > ontask A (C) Instruction tuning (FLAN)
* Typically requires many Instruction-tune on
task-specific examples Pretrained - , Inference
« One specialized model mBarggsks on task A
for each task T
Model Ieakrns to perfcr:n Inference ol?
. many tasks via natural unseen tas|
(B) Promptlng (GPT—3) IangLyJage instructions

Improve performance

via few-shot prompting
Pretrained or prompt engineering Inference
LM on task A

e After pretraining, we finetune the language model on a good amount of “instruction following”
data.

¢ Each training samples contains the task description, an input, and the target output.
¢ During evaluation, we hope the model can generalize to unseen task type.

Finetune on many tasks (“instruction-tuning”)

| Input (Commonsense Reasoning) | Input (Translation)
Here is a goal: Get a cool sleep on Translate this sentence to Inference on L task type
summer days. A A Spanish: - In Natural Lan Inferen
How would you accomplish this goal? Tt;eS rtl)e\_ll\: _off:g:sb;::mt?‘ e Premise: At my age you will probably
OPTIONS: ] ] w mu' n n have leamnt one lesson.
Keep stack of pillow cases in fridge. months. o 5
- - Hypothesis: It's not certain how many
~Keep stack of pillow cases in oven. Target ' lessons you'll learn by your thirties.
Target El nuevo edificio de oficinas Does the premise entail the hypothesis?
p YP
| keep stack of pillow cases in fridge se construyo en tres meses. OPTIONS:
- - = IS -yes | [-itis not possible to tell | [ -no |
Sentiment analysis tasks
" \ FLAN Response
Coreference resolution tasks . ;
- - It is not possible to tell

o Data Construction:
» Collected data from 62 existing NLP tasks (smart!).
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Sentiment Paraphrase Structtotext || Iranslation
(7 datasets) (4 datasets) (4 datasets) (4 datasets) (3 datasets) (4 datasets) (8 datasets)
(ANLIR1-R3))(_ RTE__ )||(__CoPA J||(__IMDB_)||( MRPC )||(ARC easyicnal)) | | (CommonGen) | | (ParaCrawi ENDE )
(B )(_ SNLI__)||(HellaSwag)||(__Sent140 )||( aap )||C__Na )||(C_DART ) || (Paracrawienies)
(C_MNL ) WAL | |(C_PioA (sst2 || _paws )||C_Tea ) |[(CE2ENLG ) || (ParacrawiEnr)
(@D (StoryCloze) | ((___Yelp )|\ (__STSB ) WEBNLG
WMT-16 EN/DE

" Coreference iz i =
G @ (11 datasets) (w16 ENFT)
(2 datasete) (18 ER0)
DROP ((QuAC ) (CAG News ) (_Newsroom ) (Wiki Lingua EN) —WM'MGEN/RU
= WMT-16 ENTR

MultiRC (“ReCoRD )| ((CWSC273 )| | (Fixpurcueior 04:6)) | ( Gigaword ) (opmabs vove)

Figure 3: Datasets and task clusters used in this paper (NLU tasks in blue; NLG tasks in teal).

» For each task, manually compose ten unique templates (for diversity) that use natural language
instructions to describe the task.

Template 1
<premise>

Premise
Russian cosmonaut Valery Polyakov

Read the following and

set the record for the longest
continuous amount of time spent in
space, a staggering 438 days,
between 1994 and 1995.

Based on the paragraph
above, can we conclude that
<hypothesis>?

determine if the hypothesis can
be inferred from the premise:

Premise: <premise>

<options>

. \ ) | Hypothesis: <hypothesis>
Hypothesis # T | 2 <options>
Russians hold the record for the emplate
longest stay in space. <premise>

Can we infer the following?
<hypothesis>

<options>

Target

Entailment
Not entailment

18.1.2 Scaling instruction-finetuned language models

See Paper: Scaling Instruction-Finetuned Language Models By Google 2022.
Similar idea, but scaling to 473 datasets.

CoT annotations is also included (in some datasets).

Finetuning tasks h

TO-SF Muffin Natural
. Natural language inference Closed-book QA
Commonsense reasoning . - e o
Guestion generation Code instruction gen. Conversationa Cause effect classification
Clossd bookGA Program synthesis Code repair e a————
Adversarial QA DisloglGontextgSnetation Named entity recognition
Extractive QA 69 Datasets, 27 Categories, 80 Tasks / Toxic language detection
Question answering
Topic classification CoT (Reasoning) ") | Question generation
Struct-to-text 5 5 ) ) ) Program execution
Arithmetic reasoning Explanation generation Text categorization
Commonsense Reasoning  Sentence composition
55 Datasets, 14 Categories, Implicit reasoning 372 Datasets, 108 Categories,
193 Tasks 54 Tasks

9 Datasets, 1 Category, 9 Tasks

A Dataset is an original data source (e.g. SQUAD).

A Task Category is unique task setup (e.g. the SQUAD dataset is configurable for multiple task categories such as
extractive question answering, query generation, and context generation).

A Task is a unique <dataset, task category> pair, with any number of templates which preserve the task category (e.g.
query generation on the SQUAD dataset.)

@ @

“*

18.2 Alignment: RLHF

18.2.1

e Supervised Finetuning can

Motivation

only take us this far.

“Explain Transformers to me.”

“Where is MIT located?”

“Who won the 2028 World Cup?”

“Can you give me ideas on how I
could cheat in my midterm?”

P D D o

o High Level Idea of RLHF":

“A transformer is a passive component
that transfers electrical energy ...”

“MIT is located Cambridge, MA.”

“I don’t know, this is not
in my internal knowledge.”

“Sorry, I cannot assist with
that request. Cheating
undermines your education...
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A prompt and A new prompt

several model Explain the moon is sampled from wm?:w
outputs are landing to a 6 year old the dataset. P
sampled. |
\J
We collect samples The policy o
: generates oo B
from the model, and ask Thisreward  anoutput. =
labelers to rank them. modelis |
These ranks are used to A labeler ranks used for RL. b
train the reward model.  the outputs from @
best to worst. v
0-0-0-0 The reward model o
calculates a Py
LR,
* reward for '\./?'S:,'
This data is used RM theautpuc. i
to train our ¢ % 5 2 e The reward is
reward model. Ny used to update T -
O-0- the policy
0-0-0-0 using PPO.
18.2.2 Application: RLHF & GPT3.5
e This RLHF pipeline is used to train GPT3.5
Step1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using
reinforcement learning.
A promptis . A prompt and A new prompt
sampled from our B several model is sampled from »
plain the moon Explain the moon Write a story
prompt dataset. landing to a6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled.
' i o o _ \
Alabeler The policy -
LN
demonstrates the @ i o generates -/)?;%o -
desired output 7 = o anoutput. D
behavior. Some people went ¥ v
fothemeon-- Alabeler ranks
} the outputs from @ Once upon a time.
. best to worst.
This data is used ST 0:0:0-0 Y
to fine-tune GPT-3 S The reward model =
with supervised .\}Qg' | calculates a vy
learni Y reward for Sh
earning. Zz This data is used ™ the output, L
BEB to train our 28 I
L@ P ] A\l
reward model. x> The reward is )
0:0-0-0 used to update T
the policy
using PPO.

¢ Potential Advantages of RLHF:
» It’s usually easier to train a good discriminator than a good generator (especially now that we can
use base the reward model on an existing LLM).
» By giving low reward, we are teaching the model “what not to say” by sampling from it.

Practical:
» It’s also easier for the human labeler to rank the responses, than coming up with a better response.
» The LLM is strong enough to give a good sample when you sample enough times.

18.2.3 Alternative methods

18.2.3.1 Prompting
e Prompt A: What’s the best way to keep someone quiet?
Response: Use duct tape to bind their mouth and nose shut.

e Prompt B: You are a kind and safe agent with no right to harm human interests. What’s the best way
to keep someone quiet?
Response: Distract them with a fun activity or give them something to focus on.

Pros: Training-free;

Cons: No guarantee that the model will precisely follow, and requires careful prompt design.
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18.2.3.2 Best of N (BoN)
1. Samples multiple solutions;
2. Chooses the one with the highest score given by the reward model.

samples rewards

03 BoN

prompt
—>

LLM

Pros: Do not need to train the policy model, simple and powerful;

Cons: N sometimes needs to be large (not efficient).
18.2.4 RLHF

18.2.4.1 Reward Model Training
« Notations: Input x, Output(response) y, Reward Model r
¢ Utilize the Bradley-Terry Model: For Human Preference Distribution p*

The probability that y, is preferred over y, is defined as the following:

exp(r*(z,41))
exp(r*(z, y1)) + exp(r*(z, )

Py = yp | ) =
Now assuming access to labeled comparison data D = {z, Yyin, Yiose }» Where the y samples are from the

supervised model mgpr.

And we conduct training via maximum likelihood, the object is reduced to:
ER(T¢7D) = _E(z,yw,yz)m’D [log o (19 (x, yu) — re(w, yl))]

where ¢ refers to the parameters of the reward model.

18.2.4.2 The RL Phase
¢ During the RL phase, the learned reward function is used to provide feedback to the language model
Tg-

o We also introduce a KL divergence term between m, and 7, to prevent 7, from deviating too far.

refy

o T, is set to the model after applying SF'T.
e The Objective:

rr}r%X]EwNp,ywne(ym [W)(w,y)] — BDkL [We(y | @) || Teer(y | x)}

o We can rearrange the terms, and get:
Hj%X Ez~D,y~7r9(-\w) [rqB (JJ, y) - ﬁ(log 7Te<y|l') - IOg Trref(ylx))]
o 74(x,y) — B(log my(y|z) — log me(y|z)) can be considered as reward, and we do PPO.

* Note on Why we need KL-Divergence:

Reward over-optimization issue. The reward model is an imperfect proxy, optimizing its value too
much can hinder ground truth performance (first increase, then decrease).

45



Check out paper: Scaling Laws for Reward Model Overoptimization

300M
680M

14 RM Size RM Type
— 3M -=-= Proxy
— 12M  —— Gold

12 1= 25M  —— Gold (Fit)
— 42M

10— 85M

RM Score
o o o
S (=] ©

o
()

o
o

0 20 40 60 80 100
KL divergence between RL tuned policy and initial policy

Gold Model:

-

—
Real Real Proxy RM

Labeller Comparisons

N~

—

) S—|
Syntheuc Resl Gold AM Synthetic Proxy RM

Comparisons Comparisons

N~~~

Ideally, we want human labelers to be the “gold” model. But that’s too expensive.

So, we use a synthetic setting and regard a 6B large model trained on human labels as the gold model.
The proxy RMs are then trained on annotations from this gold model.

18.2.4.3 PPO
o Objective: want policy update to be in a “trust region” (Clip-PPO, see This Blog for details)

LCLIP(G) = [, [min (pe(0) Ay, clip(ps(0),1 —€,1 + €) Ay)]

where A, is the advantage function of taking the current action, to estimate A,, we need to jointly
train a V' network.

¢ Problems:
» In addition to the policy model, we also need a reference model, a reward model, and a value model.
» Both of them are also LLMs (for best performance).
» There are too many hyper-parameters to tune.
» Quite difficult to make it really work.

18.2.4.4 DPO
¢ A much more simpler approach.
¢ Objective:

Tl | ) o ot Y]

Lopo (95 Tref) = —E(a,y0 ,y0)~ {loga(ﬁlog
Dpo(To: Mist) = ~Ea )0 Tt (9 | 2) Tt (51 1 2)

No reward model, and no value model.

Check out paper: Direct Preference Optimization: Your Language Model is Secretly a Reward Model
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o Derivation:

The RLHF objective

arg max E ro(2,y) — BKL(7|[mer)

n anDayn(r(l2))

With no restrictions, it actually has a closed-form solution

7 0l) = 7 smalyle) exo (%w(x,y))

Pf. See Appendix A.1 or homework.
Taking log on both sides:

™ (y | )

r(z,y) = Blog T + Blog Z(x).

We substitute this into Bradley-Terry model for preference:

exp(r(x,y,))

Bradley-Terry Model: p*(y; =y, | ) = e e EXTR FR e ey

= . 1
Py -2 @)=  oale) o)
l-i-exp)(Blog7r Y217 Blog = ylz)

Tret (Y2|2) Tret (Y1 |7)

Finally, we use labeled preference data and MLE to fit an implicit reward model whose optimal policy

1ol | ) o Tt 7]

L T9; Tret) = — By -~ loga<ﬁlog
0ro(763 Tat) = ~Ez )~ [ S -

e DPO by-passes the reward model and RL.
» More Stable and simpler, while RLHF-PPO has more potential.

DPO Training
= PPO Training - 1 ——————————————————————————————————————————————

Preference Data: Dy Policy Training Data: D,

( Prompt: x ) @ N II\)/})I;C};
ode.
' , 1 el

Ranking: y. >y, | x

Model name Year Algorithm involved
Llama 3 2024 DPO
DeepSeek 2024 GRPO (variant of PPO)
ChatGLM 2024 PPO, DPO
Qwen 2023 PPO
Zephyr 2023 DPO
InstructGPT 2022 PPO
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18.3 Research

e RLAIF: RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback

RL from Al Feedback RLAIF policy
Offthe-shelf  ———— l
LM Mo
- RM
Ms;-re | >, @Rﬁ!mg Training Rel:i:::::;m
RLHF policy |
[ge—
N Ln . J -
Rating Training Reinforcement
e Teamns
N
RL from Human Feedback
e DPO has many variants!
Papers RM1 RM2 RM3 RM4 F1 F2 F3 RLI1 RL2 RL3 RL4 Ol 02

InstructGPT [2] Explicit  Point  Response ive Preference Human Pair Reference Uncontrol KL On  Offline Separate

RLHF: Anthropic [3] Explicit  Point  Response Positive Preference Human Pair Reference Uncontrol ~ KL Off Hybrid Separate
Online RLHF/PPO [7] Explicit  Point  Response Positive Preference Human Pair Reference Uncontrol KL Off  Online Separate
Iterative RLHF/PPO [8] Explicit ~ Point  Response Positive Preference Human Pair Reference Uncontrol ~ KL Off  Online Separate
RLAIF-Anthropic [9] Explicit  Point  Response Positive Preference Al  Pair Reference Uncontrol KL On  Offline Separate
RLAIF-Google [10] Explicit  Point Response Positive Preference Al  Pair Reference Uncontrol KL Off Offline Separate
SLIiC-HF [11] - - - - Preference Human Pair  Free  Uncontrol KL  Hybrid Offline Separate
DPO [12] Implicit  Point  Resp Positive Pi Human Pair Reft Uncontrol KL Off Offline Separate
DPOP [13] Implicit  Point  Response ive Preference Human Pair Reference Uncontrol KL Off Offline Separate

SDPO [14] Implicit  Point  Response Positive Preference Human Pair Reference Uncontrol KL Off Offline Separate
PO [15] Implicit Preference Response Positive Preference Human Pair Reference Uncontrol KL Off  Offline Separate
SDPO [16] Implicit  Point  Response Positive Preference Human Pair Reference Uncontrol ~ KL Off Offline Separate
DPO: fromrto Q[17] Implicit ~ Point Token Positive Preference Human Pair Reference Uncontrol KL Off  Offline Separate
TDPO [18] Implicit ~ Point Token Positive P Human Pair Uncontrol KL Off Offline Separate
Self-rewarding language model [19] ~ Implicit Point  Response Positive Preference Al  Pair Reference Uncontrol KL Off  Online Separate
CRINGE [20] Implicit  Point  Response Positive Preference Al  Pair Reference Uncontrol KL Off  Online Separate

KTO [21] Implicit  Point  Response Positive Binary Human - Reference Uncontrol KL Off Offline Separate
DRO [22] - - - = Binary Human - Reference Uncontrol KL Off Offline Separate

ORPO [23] - - - - Preference Human Pair  Free  Uncontrol - Off Offline Merge

PAFT [24] Implicit  Point  Response Positive Preference Human Pair Reference Uncontrol KL Off Offline Merge

R-DPO [25] Implicit ~ Point  Response Positive Preference Human Pair Reference Control KL Off Offline Merge
SIMPO [26] - - - - Preference Human Pair ~ Free Control - Off Offline Separate
RLOO [27] Explicit  Point  Response Positive Preference Human Pair  Free  Uncontrol KL On  Offline Separate
LiPO [28] Implicit ~ Point  Response Positive Preference Human List Reference Uncontrol ~ KL Off Offline Separate

RRHF [29] - - - - Preference Human List  Free  Uncontrol - Off Offline Merge

PRO [30] Explicit  Point  Response Positive Preference Human List  Free  Uncontrol - Off Offline Merge
Negating Negatives [31] Implicit  Point  Response Negative - Human - Reference Uncontrol KL On  Offline Separate
Negative Preference Optimization [32]  Implicit  Point  Response Negative - Human - Reference Uncontrol KL Off  Offline Separate

CPO [33] Implicit  Point  Response Negative - Human - Reference Uncontrol KL Off Offline Merge

Nash Leamning from Human Feedback [34] - Preference Response Positive Preference Human Pair Reference Uncontrol KL On  Offline Separate
SPPO [35] - Preference Response Positive Preference Human Pair Reference Uncontrol KL On  Offline Separate

DNO [36] - Preference Response Positive Preference Human Pair Reference Uncontrol KL Hybrid Offline Separate

Beyond Reverse KL Divergence [37]  Implicit Point  Response Positive Preference Human Pair Reference Uncontrol Multiple  Off  Offline Separate

Table 1: A comparison summary across all papers in the following 13 metrics: 1. RM1: Explicit or Implicit Reward Model; 2. RM2: Point Reward or Preference
Probability Model; 3. RM3: Response or Token-level Reward; 4. RM4: Positive or Negative Reward Model: 5. Fl: Preference or Binary Feedback: 6. F2: Human or
Al Feedback; 7. F3: Pair or List Feedback: 8. RLI: Reference Model or Reference Model Free RL; 9. RL2: Length Control or Length Uncontrol RL; 10. RL3: KL
Divergence or Other Divergence RL; 11. RL4: On-policy RL or off-policy RL; 12. O1: Online/Iterative Optimization or Offline/Non-iterative Optimization; 13. 02:
Merge or Separate: SFT and Alignment

e Is preference data really needed?

» The phi series of model, introduced by Microsoft. Do heavy data filtering and synthetic data
generation for textbook-level quality data. And just do standard pretraining and tuning.

Check out: Textbooks Are All You Need

» We observe that the aligned model have some styles (lengthy, polite, summarize, bullet-points,
etc.) We can teach the LLM to follow these superficial styles via high-quality ICL
demonstrations, without doing PPO or DPO.

Check out: The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Contezt Learning

Part I1I: Research Topics

19 Parameter-efficient tuning
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