
Natural Language Processing
Lecture Notes

KnightNemo
 Instructed by TianXing He

0.1 Logistics
• Homework A(mainly theory, 20pts)
• Homework B(mainly coding, 20pts)
• In-class Exam(20 pts)
• Project(40pts, outstanding porjects get +5 bonus)

0.2 Scoring thresholds
• A+: 94-100
• A: 89-93
• A-: 84-88
• B+: 80-83

0.3 Reference
• [SLP] Speech and Language Processing–Jurafsky&Martin
• [INLP] Introduction to Natural Language Processing–Eisenstein

Part I: NLP before LLM

1 Context-Free Grammar(CFG)
1.1 Terminology

Given G as a CFG.

The language of G, denoted as 𝐿(𝐺), is the set of strings derivable by G (from the start symbol).

A language L is called a context-free language (CFL) if there is a CFG G such that L = L(G).

1

Theorem : Every regular language (regular expressions, regex), is context-free.

CFG example: Natural Language

1.2 CNF
Def. Chomsky normal form (CNF) A CFG is in Chomsky normal form (CNF) if it is ε- free and
if in addition Chomsky normal form each production is either of the form A → B C or A → a.

1.3 Parsing
Given a CFG, syntactic parsing refers to the problem of mapping from a sentence to its parse tree.

2

1.3.1 CKY Parsing
Transfer the CFG to CNF, then dynamic programming.

Abb. 1: Procedure of CKY-Parsing and Results

1.3.2 Limitation
Ambiguity

1.3.3 Probabilistic context-free grammars (PCFG)

A corpus in which every sentence is annotated with a parse tree is called a treebank.

3

1.3.4 Neural CKY

2 Latent Semantic Analysis(LSA)
2.1 Term-Document Matrix
• rows are words
• columns are documents
• entries indicate how many times word i appears in document j

• rows as |D|-dim word representations
• columns are |V|-dim document representations

2.2 Normalization

2.2.1 Problem
SVD would pay too much attention to the high-freq words!

4

2.2.2 TF-IDF normalization

2.2.3 Pointwise mutual information (PMI)

3 Hidden Markov Model (HMM)
3.1 Motivating task
Part-of-speech (POS) tagging

3.2 HMM Generation

We denote all hidden-hidden transition probabilities by A , and all hidden- emission probabi-
lities by B.

5

3.3 The forward algorithm
Notice that

𝑝(𝑂:𝑡, 𝑞𝑡 = 𝑗) = 𝑝(𝑜𝑡|𝑞𝑡 = 𝑗) ∑
𝑖

𝑝(𝑂:𝑡−1, 𝑞𝑡−1 = 𝑖)𝑝(𝑞𝑡 = 𝑗|𝑞𝑡−1, = 𝑖)

We denote 𝑝(𝑂:𝑡, 𝑞𝑡 = 𝑗) as 𝛼(𝑡, 𝑗).

𝛼(𝑡, 𝑗) = 𝑏𝑗(𝑜𝑡) ∑
𝑖

𝛼(𝑡 − 1, 𝑖)𝑎ij

𝛼(1, 𝑗) = 𝜋𝑗𝑏𝑗(𝑜1)

This is also dynamic programming.

𝑝(𝑂) = ∑
𝑖

𝑝(𝑂, 𝑞𝑡 = 𝑖) = ∑
𝑖

𝛼(𝑡, 𝑖)

So the total runtime is 𝑂(𝑇𝑁2).

The forward algorithm gives us 𝑝(𝑂), 𝑝(𝑂:𝑡, 𝑞𝑡 = 𝑗).

3.4 The backward algorithm
Backward algorithm gives us 𝑝(𝑂, 𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗).

Notice that

𝑝(𝑂𝑡+1:|𝑞𝑡 = 𝑖) = ∑
𝑗

[𝑝(𝑂𝑡+2:|𝑞𝑡+1 = 𝑗)𝑝(𝑞𝑡+1 = 𝑗|𝑞𝑡 = 𝑖)𝑝(𝑜𝑡+1|𝑞𝑡+1 = 𝑗)]

which can be rewritten as:

𝛽(𝑡, 𝑖) = ∑
𝑗

𝛽(𝑡 + 1, 𝑗)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)

𝛽(𝑇 , 𝑖) = 1

So we know how to compute:

6

3.5 Combined
Combined we can get

𝑝(𝑂, 𝑞𝑡 = 𝑖) = 𝛼(𝑡, 𝑖)𝛽(𝑡, 𝑖)

𝑝(𝑂, 𝑞𝑡 = 𝑖, 𝑞𝑡+1 = 𝑗) = 𝛼(𝑡, 𝑖)𝑎𝑖𝑗𝑏𝑗(𝑜𝑡+1)𝛽(𝑡 + 1, 𝑗)

3.6 Inference: most probable tag sequence
Noting that argmax𝑄(𝑄|𝑂) = argmax𝑄(𝑄, 𝑂).

The Vertabi Algorithm:

which can be rewritten as:

3.7 Acquiring 𝜋, 𝑎, 𝑏
• Supervised Learning:(we have labels of q)

• Unsupervised Learning:

We consider the objective:

log 𝑝(𝑂|𝜃) = log ∑
𝑄

𝑝(𝑂, 𝑄|𝜃)

then for some distribution 𝑞(𝑄), we have:

log 𝑝(𝑂|𝜃) = log ∑
𝑄

𝑝(𝑂, 𝑄|𝜃) = log ∑
𝑄

[𝑞(𝑄)𝑝(𝑂, 𝑄|𝜃)
𝑞(𝑄)

] = log ∑
𝑞(𝑄)

[𝑝(𝑂, 𝑄|𝜃)
𝑞(𝑄)

]

applying Jensen’s inequality gives us:

log 𝑝(𝑂|𝜃) = log ∑
𝑞(𝑄)

[𝑝(𝑂, 𝑄|𝜃)
𝑞(𝑄)

] ≥ ∑
𝑞(𝑄)

log 𝑝(𝑂, 𝑄|𝜃) + Entropy(𝑞(𝑄)).

For given 𝑞(𝑄) the entropy term is fixed, so we need only maximize ∑𝑞(𝑄) log 𝑝(𝑂, 𝑄|𝜃).

Define 𝑞(𝑄) ≔ 𝑝(𝑄|𝑂, 𝜃𝑘), denote the objective as 𝑄(𝜃| 𝜃𝑘).

Actually

7

so when 𝜃 and 𝜃𝑘 are close enough, so maximizing ∑𝑞(𝑄) log 𝑝(𝑂, 𝑄|𝜃) is similar to maximizing the true
objective.

the blue terms can be computed using the forward-backward algorithm.

4 N-Gram
4.1 Language Model
A Language Model assigns a probability of any sequence of words. So, if W denotes any sequence of
words, 𝑊 ∈ 𝑉 ∗, we have:

∑
𝑊

𝑃𝐿𝑀(𝑊) = 1

• A word token (sometimes we just call it “word”) is a specific occurrence of a word in a text.
• A word type refers to the distinct form of a word, regardless of how many times it appears in a

sentence or text. It is the unique identity of the word.

4.2 Naive Approach: Unigram LM
Assume each word is independent.

Problem:

𝑃unigram(I study NLP at THU) = 𝑃unigram(I study THU at NLP)

4.3 Bigram, Trigram, N-gram
Consider pairs of words. It’s basically just a table lookup!

8

We can extend to tri-gram and N-grams. As we know

𝑃(𝑤1:𝑇) = ∏
𝑇

𝑖=0
𝑝(𝑤𝑖|𝑤1:𝑖−1),

So basically N-gram is history truncation

𝑝(𝑤𝑖|𝑤1:𝑖−1) ≈ 𝑝(𝑤𝑖|𝑤𝑖−𝑁:𝑖−1).

• special tokens:
‣ <eos>: end of sentence token
‣ <unk>: out-of-vocabulary token

4.4 Data Sparsity
E.g. „We study anthropology in THU.“

the probability is near zero. How do we deal with it?

4.4.1 Add-k Smoothing

k is hyperparameter that is tuned.

4.4.2 Interpolation

where ∑𝑖 𝜆𝑖 = 1.

4.4.3 Backoff

4.5 Perplexity
A metric for LM evaluation. Smaller Perplexity means better LM.

9

5 Word2Vec
5.1 Tasks

5.1.1 Skip-gram
Learn representations that predict the context given a word.

5.1.2 CBOW (Continous Bag-of-Words)
Learn representations that predict a word given context.

5.2 Parameters to Learn

5.2.1 Skip-Gram objective

The p(out|input) is simply a dot product of corresponding vectors then softmaxed.

In practice, the window size is a hyperparameter.

10

Doing Gradient Descent on this objective yields:

i.e. Move towards pointing in the same direction as the true output embedding minus the expected output
embedding under the model.

5.2.2 CBOW objective

The desired probability is of the following form (Z is normalizing term):

𝑝CBOW(𝑥𝑡|𝑥𝑡−𝑠, …, 𝑥𝑡+𝑠) =
exp(𝑢𝑥𝑡

⋅ 1
2𝑠 ∑𝑠

𝑗=−𝑠 𝑤𝑡+𝑗)

𝑍

In practice, the window size is a hyperparameter.

5.2.3 Trick: Negative sampling (skip-gram version)
The computation of the loss function is expensive:

Idea: We turn the prediction into a binary classification task.

For each true pair <x,y>, we sample k negative samples y’.

11

where 𝜎 is the sigmoid function, and 𝑃𝑛 can be a unigram model.

5.3 Word Vector Properties

5.3.1 Linear Word Analogies

Applications:
• Word embedding initialize + finetuning

 an useful practice before BERT.
• Compositional Morphology

 help build embeddings for rare words.

Word2Vec works better than LSA(empirically).

Part II: Neural Networks & LLMs

6 Brief Review of ML/DL Basics
6.1 KL-Divergence

𝒟KL(𝑝‖𝑞) ≔ ∫
+∞

−∞
𝑝(𝑥) ln 𝑝(𝑥)

𝑞(𝑥)
𝑑𝑥 = ∑

𝑥∈𝑋
𝑝(𝑥) ln 𝑝(𝑥)

𝑞(𝑥)

6.2 Multi-Class classification
• Task description: 3-class sentiment classification

‣ This restaurant is great! → positive
‣ The food is okay. → neutral
‣ I hate this dish! → negative

• General Recipe: Encode, Predict, Train
‣ Encode: an encoder(e.g., a neural network) which maps the input 𝑥 to a D-dim vector ℎ

12

‣ Predict:

Linear Transformation: 𝑧 = 𝑊 clsℎ + 𝑏cls

Then we apply sofmax: (map 𝑧 → Pr(𝑦|𝑥))

‣ Train:

Cross-Entropy Loss:

𝐿CE = ∑
𝑖

− log Pr(𝑦 = 𝑦𝑖|𝑥𝑖)

Update by SGD:

6.3 Neural Networks
• MLP
• Back-Propogation
• Dropout Regularization

‣ Dropout is a regularization technique for neural networks that randomly drops a unit (along with
connections) at training time with probability 𝑝

‣ At test time, all units are present, but with weights scaled by 𝑝.
• Parellel Computation

7 Neural Network Language Model
7.1 FeedForward NN LM
e.g. tri-gram neural network version

ℒ = ∑(𝑤𝑖−2,𝑤𝑖−1,𝑤𝑖)∈ data − log Pr(𝑤𝑖|𝑤𝑖−1, 𝑤𝑖−2)

13

Different from sentiment classification,output class number is now |𝑉 |.
• Remedy 1: Class-based LM

Idea: cluster words into
√

𝑉 clusters.

Computation Cost: 𝐷|𝑉 | → 2𝐷
√

𝑉

ℒ = −[log Pr(𝑐𝑤|ℎ) + log Pr(𝑤|𝑐𝑤, ℎ)]

• Remedy 2: Noise Contrastive Estimation
‣ Training without explicit normalization
‣ Discriminating between the target token and noise tokens
‣ Key speed-up: 𝑝𝜃(𝑤|ℎ) does not need to be normalized (no softmax). NCE training will automatically

normalize it.

𝐽ℎ(𝜃) = 𝔼𝑃ℎ
𝑑
[log 𝑃ℎ

𝜃 (𝑤)
𝑃ℎ

𝜃 (𝑤) + 𝑘𝑃𝑛(𝑤)
] + 𝑘𝔼𝑃𝑛

[log 𝑘𝑃𝑛(𝑤)
𝑃ℎ

𝜃 (𝑤) + 𝑘𝑃𝑛(𝑤)
]

Check out Paper: [A Fast and Simple Algorithm for Training Neural Probabilistic Language Models]
• Limitation FNNLM:

‣ encodes a very limited context(n-gram)

7.2 Recurrent Neural Network Language Model

7.2.1 Architecture
• Encode whole history
• maintain ℎ𝑡 which is updated each time step.

14

https://arxiv.org/abs/1206.6426

• ℎ𝑡 = 𝜎(𝑊𝑖ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏)
• 𝑦𝑡 = softmax(𝑊ℎ𝑜ℎ𝑡 + 𝑏𝑜)
• 𝐿(𝑤) = ∑𝑖 − log Pr(𝑤𝑖|𝑤0,…,𝑖−1)
• 𝑊𝑖ℎ, 𝑊ℎℎ are shared across timesteps(hence Recurrent).

7.2.2 Back-Propogation Through Time(BPTT)

• Problem: 𝜕𝐿
𝜕ℎ𝑡

 Gradient Exploding/ Gradient Vanishing
• Intuition:

Rough estimation: 1) ignore activation function; 2) only consider 𝐿𝑡

𝜕𝐿𝑡
𝜕ℎ1

≈ 𝜕𝐿𝑡
𝜕ℎ𝑡

𝑊 𝑡−1
ℎℎ

‣ ‖𝑊ℎℎ‖ < 1: Gradient Vanishing
‣ ‖𝑊ℎℎ‖ > 1: Gradient Exploding

• Gradient Clipping(for gradient explosion): 𝛾 is hyperparameter.

clip(∇𝐿) = min{1, 𝛾
‖∇𝐿‖2

}∇𝐿

7.2.3 Parellel Computation
• Parellel across sentences
• Dealing with Variable Sequence Length:

‣ padding, truncating, masking

‣ Bucketing:

Sort sentences such that similarly lengthed sentences are in the same batch.

15

7.2.4 Sampling with RNNLM
• autoregressive

• RNN for text classification

Consider last hidden state ℎ𝑇 as encoding of the whole sentence. Add a linear classifier head.

7.2.5 LSTM(skipped) & GRU
• Used for gradient vanishing problem
• LSTM Related Blog: [Understanding LSTM Networks]
• GRU(Gated Recurrent Unit)

Notice that the (1 − 𝑧) ⊙ ℎ𝑡−1 contains no weight matrix, so if 𝑧 is not near 1, the gradient flows
through.

16

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

7.3 Tricks in Deep Learning

7.3.1 Residual Network
ℎ𝑙+1 = ℎ𝑙 + 𝐹(ℎ𝑙)

8 More On RNN
8.1 More on AR-LM
• autoregressive. We can combine different modules together to form a large neural model.

e.g.

8.2 Bi-directional RNN
bi-directional can be useful for some applications(e.g. part-of-speech tagging)

• Q: Bi-directional RNN for AR-LM?
‣ Not possible, has future information.

• Q: Bi-directional RNN for sentence-encoding?
‣ Way1: add a special input to the input.
‣ Way2: do a max-pooling or mean-pooling of the hidden states.

17

8.3 Encoder-Decoder model for seq2seq task
e.g. Machine Translation
• Encoder: bi-RNN
• Decoder: uni-RNN

Average the encoder’s hidden vectors for the input of the decoder RNN.

8.3.1 Attention!!!
Idea: A single vector is not enough, want to pay attention to different parts of the input in different
timesteps.

High Level Idea:

Implementation:(Cross-Attention)

18

• At timestep 𝑡:
• Calculate alignment score: 𝑎𝑖 = (ℎenc

𝑖)𝖳𝑊𝑎ℎdec
𝑡−1

• Get attention distribution: 𝑎𝑖 = softmax(𝑎)
• Pass ∑𝑖 𝑎𝑖ℎenc

𝑖 to the encoder
• 𝑊𝑎 is shared across timesteps.

At training, optimize 𝐿 = ∑𝑖 − log 𝑃𝜃(𝑦𝑖|𝑥𝑖)

8.4 Decoding from a LM
Consider MT task for AR-LM , if we want a whole sentence as output.

The objective is to find arg max𝑦 PrAR-LM(𝑦|𝑥).

8.4.1 Greedy Decoding:
𝑦𝑡 ≔ arg max𝑦𝑡

Pr𝐿𝑀(𝑦𝑡|𝑥, 𝑦1,…,𝑡−1) 𝑡 = 1, 2, …
• doesn’t guarantee sequence-level argmax
• Obs. : DP(like Vertabi for HMM) doesn’t work here.(No optimality of sub-problems)

8.4.2 Beam-Search
• Maintain a number of beams(i.e. sequence of tokens).

• On each time-step:

We expand the current beams, sort them, and only keep the beams with largest log-probability.

8.4.3 BLEU metric for MT

Attention works!

19

8.5 Back Translation for MT Data Augmentation
• Q: Given a decent amount of bilingual data (𝑋, 𝑌) and a great amount of monolingual data in target

language 𝑌 . How can we create more paired data?
• A: Train a backward model: 𝑌 → 𝑋, and conduct generation on the monoloingual data.

9 Text Classification
Have covered basic DNN/RNN for text classification.

9.1 FastText + FNN
• Average the (pretrained) embeddings of n-gram features to form the hidden variable.
• Linear layer followed by softmax for classification.
• Very fast (small model). Can run on CPUs. Reasonable performance.

9.2 CNN for text classification
• RNN deals with variable lengths
• CNN can also do that!

20

9.3 Recursive neural networks with tree structure

Build on parse trees. Also check Tree LSTM.

9.4 GLUE tasks
• Many natural language understanding (NLU) tasks can be posed as a text classification task. The

General Language Understanding Evaluation (GLUE) benchmark.
• a harder set of tasks, which brings SuperGLUE

9.5 Deep contextualized word representation (ELMo)
• Embeddings from Language Models
• Model: multi-layer bidirectional LSTM
• Objective: predict the next word in both directions independently; i.e., left-to-right and right-to-left
• Data: 1B word LM data
• Downstream: extract output-layer features and add them to existing models (as the input word

embeddings)

• Strong Performance on GLUE tasks. Considered pioneers of self-supervised generative pretraining
(e.g., BERT).

10 VAE-LM
10.1 Motivation
In RNNLM, we generate token by token. VAE tries to represent whole sentence using 𝑧. We learn a
encoder: 𝑞𝜙(𝑧|𝑥) and a decoder(generative model): 𝑝𝜃(𝑥|𝑧).

21

10.2 Generation:
• Sample 𝑧 from prior 𝑝(𝑧)
• Sample 𝑥 from generative model 𝑝𝜃(𝑥|𝑧)

10.3 Training:
The “ELBO” objective

ℒ(𝜃; 𝑥) = −KL(𝑞𝜃(𝑧|𝑥)‖𝑝(𝑧)) + 𝔼𝑞𝜃(𝑧|𝑥)[log 𝑝𝜃(𝑥|𝑧)] ≤ log 𝑝(𝑥)

Derivation:

• Reparameterization trick:

22

𝑧 = 𝜇 + Σ ⊙ 𝒩(0, 𝐼), we can do back-prop now. Continous Latent Space.

10.4 Optimization Challenge:
In vanilla VAE-LM training, KL term quickly decrease to zero(throwing away latent information).
• KL cost annealing

KL term’s weight gradually increase with training process.
• Input word dropping

• Bag of words Loss

In parallel, train the decoder network to predict the bag-of-words in the response x as shown in.

11 Subword Tokenization
11.1 Byte Pair Encoding(BPE) Tokenization
Used in GPT, Llama.
• (1) Start with a unigram vocabulary of all characters in the data.
• (2) In the data, find the most frequent pair, merge it, and add to the vocabulary.
• (3) Stop when vocabulary is of pre-determined size (e.g., 50k).

Example:

23

es, est, lo, low…

lowest→low,est lost→ lo,s,t

11.2 Other Approaches
• Word Piece(BERT), sentence piece…

12 Transformers, BERT, GPT
12.1 Transformer
This part omittes lots of details as the author believes he know transformers well enough.

A transformer Block:

12.1.1 Self-Attention
𝑎𝑖∗ = softmax(𝑞𝖳

𝑖 𝑘∗
√dim(𝑘∗)

), 𝑧𝑖 = ∑𝑗 𝑎𝑖𝑗𝑣𝑗 Can be computed in Parellel

12.1.2 Multi-Head Attention

24

12.1.3 Other Designs in the attention block
• FeedForward NN
• Residual:

𝑓residual(𝑥, 𝐹) = 𝐹(𝑥) + 𝑥

for self-attention and FFNN.
• LayerNorm:

LayerNorm(ℎ) = 𝛼 ⋅ ℎ − mean(ℎ)
std(ℎ)

+ 𝛽 (𝛼, 𝛽 are learned parameters)

‣ BatchNorm: across samples, same feature;
‣ LayerNorm: across features, same sample

12.1.4 Position Encoding

12.1.5 Learning Rate Warmup and Linear Decay

12.2 BERT
Bidirectional Encoder Representations from Transformers

Major Objectives in BERT:
• Masked language modeling (MLM)
• Next sentence prediction (NSP)

12.2.1 Masked language modeling (MLM)
• randomly mask (via a [mask] token) 15% of the tokens in each sequence.
• ask the transformer model to predict the masked token on the top layer via standard cross-entropy loss.

• Problem: not ideal representation for non-masked words
• Heuristic:

‣ For 10% of the time, we replace [M] with a random token.

25

‣ For another 10% of the time, we do not change the original token.
‣ O.w., the mask token is used.

12.2.2 Next sentence prediction (NSP)
• add a [CLS] token and ask BERT to predict whether sentence2 is the next sentence of sentence1.
• For 50% of the time, a random sentence is used as a negative example.
• Actually not that useful(not used after bert)

12.2.3 BERT finetuning
• slightly modify the top layers of BERT and tune it ondownstream tasks.

12.2.4 Extensions of BERT
• ALBERT (2019, A Lite BERT …)
• RoBERTa (2019, A Robustly Optimized BERT …)
• DistilBERT (2019, smaller, faster, lighter version of BERT)
• ELECTRA (2020, Pre-training Text Encoders as Discriminators not Generators)
• LongFormer (2020, Long-Document Transformer)

I. ELECTRA(Efficiently Learning an Encoder that Classifies Token Replacements Accurately):
• Instead of masking the input, our approach corrupts it by replacing some tokens with plausible

alternatives sampled from a small generator network.
• Then, instead of training a model that predicts the original identities of the corrupted tokens, we

train a discriminative model that predicts whether each token in the corrupted input was replaced by
a generator sample or not.

• Much higher data efficiency(task is defined over all sequence instead of just masked-out ones)

26

II. LongFormer
• 𝒪(𝑁2) attention computation cost is expensive for long sequence
• Limit the attention to a small span of tokens to save computation
• Sliding Window Attention:

‣ limit the attention to a sliding window of size 𝑤.
‣ Computation cost: 𝒪(𝑁 ⋅ 𝑤)

• Q: For an embedding on layer L, what’s its receptive field?
• A: 𝐿 ⋅ 𝑤

• Dilated Sliding Window:

‣ Larger receptive field, but miss some local information

‣ Fix: Multi-Head Attention.

‣ We can use a combination of 2 heads of dilated and other heads with local sliding window.

12.3 Transformer Decoder & GPTs
• BERT-like models are great for sentence/document encoding or deep contextualized word embedding.
• But you can not directly use it for text generation, or infer the log-probability of a given text.
• So let’s talk about transformers for autoregressive language modelling (generation).

12.3.1 Causal Mask
• apply the mask before the softmax operation, so that the attention distribution is still normalized.

12.3.2 GPTs
• GPT models are transformer decoders trained for AR-LM.
• generative capability emerged from large-scale training

27

I. GPT-1(before BERT, still focused on NLU)
• pretrain a transformer decoder AR-LM on large data, and the finetune it on downstream NLU tasks.
• take the final-layer embedding of the last token in the text, and add a linear classification head.

II. GPT-2

• Zero-shot capability to downstream tasks:

‣ No finetune

‣ In generation, it continues the language.

Prompts: Translate the following text to French. Text: [ENG TEXT] French:

‣ WebText data contains all sorts of data → we are implicitly doing multi-task training during the
pretraining.

• Scaling up can help zero-shot ability

• Common knowledge

• Open-ended generation

28

‣ Open-ended generation refers to generation tasks that has big freedom and diversity, like story or
news generation.

‣ very different from translation or summarization, where the generation is like “another version” of
the input.

‣ The model needs to rely its own (memory, consistency or creativity).

12.3.3 The top-K sampling algorithm
• Direct sampling from PrAR-LM(⋅ |𝑤[1:𝑖]) can be diverse but has poor quality or consistency.
• Top-K sampling: trade diversity for quality

‣ Represent 𝑃(⋅ | 𝑤[1:𝑖]) by 𝑝 = (𝑝1, …, 𝑝|𝑉 |), where 𝑝1 ≥ … ≥ 𝑝|𝑉 |.
‣ Sample 𝑊𝑖+1 from 𝑝:

𝑝𝑖 = 𝑝𝑖 ⋅ 𝟙[𝑖 ≤ 𝑘]
𝑍

• Sampling algorithms provide a sweet quality-diversity trade-off.(Essential difference from decoding
e.g. beam search)

13 Rethink MLE, Sampling, and Bad Behavior
13.1 Criticizing teacher forcing (MLE)

13.1.1 Teacher Forcing(MLE)
• The MLE objective: log 𝑃 (𝑊) = ∑𝑖 log 𝑃(𝑤𝑖|𝑤[1:𝑖−1]) where 𝑊 is from training data.
• However in generation, 𝑊𝑀

𝑖 ∼ 𝑃(𝑊𝑖|𝑊𝑀
1:𝑖−1), there may be a distribution shift.

13.1.2 The exposure bias hypothesis:
Due to the exposure to ground-truth prefix, the model is biased to only perform well during training,
but not generation.

Importantly, the error is hypothesized to accumulate during generation, and the generation will be
incrementally distorted.

13.1.3 Language GANs
• This belief in exposure bias motivates Language GANs.
• In GAN, no teacher forcing, training is directly applied to model samples.
• GAN example in CV:

29

• However in NLP, not differentiable. the gradient can not flow back through discrete sampling.

Solutions:
• The Gumbel-softmax reparameterization
• The reinforce trick (policy gradient)

13.1.4 The Gumbel-softmax reparameterization

One practice is to anneal 𝜏 from large to small during training.

• Straight-Through Trick:

Sometimes we want our encoding to really be one-hot during training.

Do argmax to get the one-hot vector, y_hard

ret = y_hard - y_soft.detach() + y_soft, returns the ont-hot vector, but the gradient only flows
through the soft part in back-prop.

13.1.5 The Reinforce Trick

Examples of Language GANs:
• SeqGAN: SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient

Reported better generation quality than MLE baseline.

However, for MLE baselines, we can tune the temperature to tradeoff quality and diversity.

30

https://arxiv.org/pdf/1609.05473

Check out Language GANs Falling Short

Results: Language GANs are actually worse than the MLE baseline.(NLL test represents diversity, NLL
oracle represents quality.)

TakeAway:
• Language GAN is a great idea,but GAN training is notoriously unstable.
• MLE training + sampling algorithm is an amazing combination.

13.2 Sampling algorithms

13.2.1 Top-k Sampling

𝑝𝑖 = 𝑝𝑖 ⋅ 𝟙[𝑖 ≤ 𝑘]
𝑍

13.2.2 Nucleus(top-P):

𝑝𝑖 =
𝑝𝑖 ⋅ 𝟙[∑𝑖−1

𝑗=1 𝑝𝑗 < 𝑃]

𝑍

13.2.3 Tempered (T)

𝑝𝑖 =
exp(log(𝑝𝑖)

𝑇)
𝑍

Check out: A Systematic Characterization of Sampling Algorithms for Open-ended Language Generation

13.2.4 Common Features of these three sampling methods
• The order of elements are preserved:

𝑝𝑖 ≥ 𝑝𝑗 → 𝑝𝑖 ≥ 𝑝𝑗

• The entropy of the distribution are reduced

ℋ(𝑝) ≤ ℋ(𝑝)

31

https://arxiv.org/pdf/1811.02549
https://arxiv.org/pdf/2009.07243

• The slope of the non-zero elements are preserved:

log 𝑝𝑖 − log 𝑝𝑗

log 𝑝𝑗 − log 𝑝𝑘
=

log 𝑝𝑖 − log 𝑝𝑗

log 𝑝𝑗 − log 𝑝𝑘
if 𝑝𝑖, 𝑝𝑗, 𝑝𝑘 > 0

Hypothesis:[See Paper for details]
• Sampling algorithms that satisfy all three properties should be at least as good as the top-k/nucleus/

tempered sampling in the Q-D trade-off.
• Sampling algorithms that violate at least one of the properties won’t be as good.

Take-away: What matters is not the details of how the algorithm is designed, but the high-level principles
(properties) on which it is based on.

13.3 Correcting bad behavior of NLG models

13.3.1 Biased decoding
• Motivation: Discourage repeating token

• 𝑇 is temperation, 𝑔 refers to the set of generated tokens. In practice, set 𝜃 = 1.2

13.3.2 Unlikelihood training for repetition
• Explicitly discourage repeating tokens during training

where 𝒞𝑡
prev-context = {𝑥1, …, 𝑥𝑡−1} \ {𝑥𝑡}.

13.3.3 The MMI criterion
• Motivation: To discourage generic responses in chatbot(e.g. “I don’t know”,“I’m ok”)
• Usual Objective:

𝑇 = arg max
𝑇

{log 𝑝(𝑇 |𝑆)}

• Maximum (pointwise) Mutual Information (MMI) Objective:

We compares the probability of two events occurring together to what this probability would be if the
events were independent:

max𝑇 log 𝑝(𝑆, 𝑇)
𝑝(𝑆)𝑝(𝑇)

which can be formulated as

𝑇 = arg max
𝑇

{log 𝑝(𝑇 |𝑆) − log 𝑝(𝑇)}.

13.3.4 Training with negative examples
• Motivation: generic response of chatbots
• Dynamically count the frequency of decoded response from the model during training, and assign

negated gradients to those most frequent samples (denoted as 𝑦neg).

32

13.3.5 Hallucination
• “Hallucinations” refers to seemingly convincing yet factually incorrect text.
• Cover in future lectures

14 Transformer encoder-decoder & RoPE
• Encoder: BERT
• Decoder: GPT
• For seq2seq tasks(e.g. Machine Translation), construct encoder-decoder transformer

14.1 Encoder-Decoder Transformer

14.1.1 Architecture
• Each decoder layer is a self-attention followed by a cross-attention.

• The query vector for a transformer decoder’s cross-attention head is from the output of the previous
decoder layer. However, the key and value vectors are from the encoders’ outputs.

• Pretraining Encoder-Decoder Transformer:

Similar to MLM in BERT (encoder), we can design self-supervised pretraining objective as seq2seq
tasks for encoder-decoder models.

14.1.2 Examples:
• BART: BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and

Comprehension

• T5: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer

• T5 paradigm: text2text

In T5 task-specific finetuning, all tasks (including classification or regression) are converted to a text-
to-text format.

In this way, we do not need to change model architecture for most tasks.

33

https://arxiv.org/pdf/1910.13461
https://arxiv.org/pdf/1910.13461
https://arxiv.org/pdf/1910.10683.pdf

14.1.3 From Encoder-Decoder to Decoder-only
Consider multi-round chatbot dialogue scenario,
• Decoder-Only:

‣ Training and Inference architecture is highly constistent
‣ Naturally handles variable-length text generation
‣ During application, we just do natural concatenation (always causal attention). No computation

is wasted (assuming we save hidden states of the history).

• Encoder-Decoder:
‣ In pretraining, we need to build text of variable length, and the training signal is only from the

decoder side.
‣ During application, we need to re-encode (because the encoder is bi-directional) the whole history

for each dialogue turn.

14.2 Rotary position embedding (RoPE)
• Absolute Embedding:

𝑓𝑡:𝑡∈{𝑞,𝑘,𝑣} ≔ 𝑊𝑡:𝑡∈{𝑞,𝑘,𝑣}(𝑥𝑖 + 𝑝𝑖)

𝑝𝑖 =

{
{
{
{
{𝑝𝑖,2𝑡 = sin(𝑘

10000
2𝑡
𝑑

)

𝑝𝑖,2𝑡+1 = sin(𝑘
10000

2𝑡
𝑑

)
∈ ℝ𝑑

• RoPE
‣ Motivation: want the dot product between query (position 𝑚) and key (position 𝑛) to directly be a

function of (𝑚 − 𝑛).

‣ 2D-case:

‣ General Form:

34

‣ Intuition:

‣ adopted in the latest LLaMA models

15 GPT-3 & In-Context Learning
15.1 Scaling Law of LMs

15.1.1 Data Composition of GPT-3
• Common Crawl (webpages)
• High quality data (such as Wiki) is intentionally repeated multiple times.

15.1.2 Scaling Law

• Model Size grow faster than need for Data

35

15.2 GPT-3 & In-Context Learning
• LM perplexity improves

15.2.1 In-Context Learning
• So far, “learning” usually refers to gradient update with labelled data (classification or seq2seq

tasks).

• Now, we only want to construct some prompt (also called context or prefix) and ask the LM to do
continuation.

• Prompt Example

“Please negate the meaning of the sentence. [<- task description, optional] I hate NLP => I love NLP;
Today’s weather is good => Today’s weather is bad; [<- the demonstrations] I had a good day => [<-
the example for testing (output)]”
• Performance on SuperGLUE (32-shot ICL)

• Reasons:
‣ Mostly unclear.
‣ GPT-3 Paper’s Explanation:

“During unsupervised pre-training, a language model develops a broad set of skills and pattern
recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task.”

15.2.2 Terminology of GPT-3
• Zero-shot:

• Few-shot (⇔ ICL):

• Finetuning:

36

https://arxiv.org/pdf/2005.14165

15.2.3 Few-shot learning before GPT3: MAML
• Before GPT3, few-shot learning still refers to how a model can quickly adapt to a new task demons-

trated with only a few examples via gradient update.
• We have a meta-learning phase on a wide set of tasks. In effect, the meta-learning problem treats

entire tasks as training examples.

Check out Paper: Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Chelsea Finn!
• Assuming each sub-task has a (small) few-shot train-set and a (smaller) dev-set.
• In the inner loop of each sub-task, we update to a pseudo 𝜃.
• In the outer loop, we compute real gradient on the dev-set loss with 𝜃′. So the real gradient involves

second-order term (why?).

15.2.4 GPT-3 on NLP-community
• Not Open-sourced
• API calls for prompted generation. API calls for finetuning ain’t that useful.
• Research focus changes to building good prompts

37

https://arxiv.org/pdf/1703.03400

16 Chain-of-Thought(CoT) Prompting
16.1 Idea
In the few-shot demonstrations, add reasoning steps before giving the answer. These reasoning steps are
manually written by humans.

Check out Paper: Chain-of-Thought Prompting Elicits Reasoning in Large Language Models

16.2 Results
• CoT is an emergent ability of model scale. That is, its impact is more pronounced when the model

large (∼ 100B).

16.3 Zero-Shot CoT
Check out Paper: Large Language Models are Zero-Shot Reasoners

38

https://arxiv.org/pdf/2201.11903
https://arxiv.org/pdf/2205.11916

• Chaining of two prompts:

This ability is also emergent with model size.

16.4 Intuitions behind why CoT works
• Divide and conquer
• Reasoning steps take more computation, giving LM more time to think.

17 More (Research) on CoT & ICL
17.1 CoT with self-consistency
• For CoT, we could sample multiple reasoning path from the LLM with temperature sampling.
• And then take a majority voting over the answers!

17.2 Tree of thoughts (ToT)
• Maintain and expand a thought-tree.
• For each existing step, we prompt the LLM the propose multiple next steps, and also to judge which

path (by giving a value) is more promising.
• The nodes that are judged to be unlikely will be discarded.

Check out Paper: Tree of Thoughts: Deliberate Problem Solving with Large Language Models

39

https://arxiv.org/pdf/2305.10601

Expand Nodes in some order:

17.3 Bias in ICL

17.3.1 Majority and Recency Bias
• The demonstration’s labels and permutation changes the performance

Check out Paper: Calibrate Before Use: Improving Few-Shot Performance of Language Models

17.3.2 Calibration of few-shot prediction
• Want to learn a linear transformation to calibrate the predicted distribution.

𝑞 = softmax(𝑊𝑝 + 𝑏)

• To counter the bias, we create a “null” input, and argue that the model’s prediction for null should
be balanced (uniform).

So we can set 𝑏 = 0, 𝑊 = diag(predictionnull)
−1.

• Pretty useful with a low number of demonstrations.

40

https://arxiv.org/pdf/2102.09690

17.4 Rethink ICL: The role of demonstration
• If we replace the labels in few-shot demonstrations with random labels, the performance do not

drop too much.
• The format and label space learned from the demostrations seems to be relatively more important.
• The result should be taken with grain of salt… If we look closer, some task got low performance w/

random label, but its impact is averaged out in the figure.

Check out: Rethinking the Role of Demonstrations: What Makes In-Context Learning Work?

17.5 ICL and induction heads

17.5.1 Observation: Emergence of ICL

17.5.2 Induction heads (for Repetition)
• Induction heads are any heads that empirically increase the likelihood of [B] given [A] [B] … [A].

• We can also design some metric to quantify whether an attention head is exhibiting this behavior.

• Formally, we define an induction head as one which exhibits the following two properties on a repeated
random sequence of tokens:

‣ Prefix matching: The head attends back to previous tokens that were followed by the current
and/or recent tokens. That is, it attends to the token which induction would suggest comes next.

‣ Copying: The head’s output increases the logit corresponding to the attended-to token.

41

https://arxiv.org/pdf/2202.12837

17.5.3 Key Finding
Induction heads form simultaneously as ICL improves dramatically!

18 Instruction tuning & alignment
18.1 Instruction tuning
• Zero-shot prompting is nice, however pretraining on general data does not always work (which is not

surprising).

18.1.1 FLAN (Finetuned Language Net)
Paper: Finetuned Language Models Are Zero-Shot Learners

• After pretraining, we finetune the language model on a good amount of “instruction following”
data.

• Each training samples contains the task description, an input, and the target output.
• During evaluation, we hope the model can generalize to unseen task type.

• Data Construction:
‣ Collected data from 62 existing NLP tasks (smart!).

42

https://arxiv.org/pdf/2109.01652

‣ For each task, manually compose ten unique templates (for diversity) that use natural language
instructions to describe the task.

18.1.2 Scaling instruction-finetuned language models
See Paper: Scaling Instruction-Finetuned Language Models By Google 2022.
• Similar idea, but scaling to 473 datasets.
• CoT annotations is also included (in some datasets).

18.2 Alignment: RLHF

18.2.1 Motivation
• Supervised Finetuning can only take us this far.

• High Level Idea of RLHF:

43

https://arxiv.org/pdf/2210.11416

18.2.2 Application: RLHF & GPT3.5
• This RLHF pipeline is used to train GPT3.5

• Potential Advantages of RLHF:
‣ It’s usually easier to train a good discriminator than a good generator (especially now that we can

use base the reward model on an existing LLM).
‣ By giving low reward, we are teaching the model “what not to say” by sampling from it.

Practical:
‣ It’s also easier for the human labeler to rank the responses, than coming up with a better response.
‣ The LLM is strong enough to give a good sample when you sample enough times.

18.2.3 Alternative methods

18.2.3.1 Prompting
• Prompt A: What’s the best way to keep someone quiet?

Response: Use duct tape to bind their mouth and nose shut.

• Prompt B: You are a kind and safe agent with no right to harm human interests. What’s the best way
to keep someone quiet?
Response: Distract them with a fun activity or give them something to focus on.

Pros: Training-free;

Cons: No guarantee that the model will precisely follow, and requires careful prompt design.

44

18.2.3.2 Best of N (BoN)
1. Samples multiple solutions;
2. Chooses the one with the highest score given by the reward model.

Pros: Do not need to train the policy model, simple and powerful;

Cons: 𝑁 sometimes needs to be large (not efficient).

18.2.4 RLHF

18.2.4.1 Reward Model Training
• Notations: Input 𝑥, Output(response) 𝑦, Reward Model 𝑟
• Utilize the Bradley-Terry Model: For Human Preference Distribution 𝑝∗

The probability that 𝑦1 is preferred over 𝑦2 is defined as the following:

𝑝∗(𝑦1 ≻ 𝑦2 | 𝑥) = exp(𝑟∗(𝑥, 𝑦1))
exp(𝑟∗(𝑥, 𝑦1)) + exp(𝑟∗(𝑥, 𝑦2))

.

Now assuming access to labeled comparison data 𝒟 = {𝑥, 𝑦win, 𝑦lose}, where the 𝑦 samples are from the
supervised model 𝜋SFT.

And we conduct training via maximum likelihood, the object is reduced to:

where 𝜙 refers to the parameters of the reward model.

18.2.4.2 The RL Phase
• During the RL phase, the learned reward function is used to provide feedback to the language model

𝜋𝜃.
• We also introduce a KL divergence term between 𝜋𝜃 and 𝜋ref, to prevent 𝜋𝜃 from deviating too far.
• 𝜋ref is set to the model after applying SFT.
• The Objective:

• We can rearrange the terms, and get:

max
𝜋𝜃

𝔼𝑥∼𝐷,𝑦∼𝜋𝜃(⋅|𝑥)[𝑟𝜙(𝑥, 𝑦) − 𝛽(log 𝜋𝜃(𝑦|𝑥) − log 𝜋ref(𝑦|𝑥))]

• 𝑟𝜙(𝑥, 𝑦) − 𝛽(log 𝜋𝜃(𝑦|𝑥) − log 𝜋ref(𝑦|𝑥)) can be considered as reward, and we do PPO.

* Note on Why we need KL-Divergence:

Reward over-optimization issue. The reward model is an imperfect proxy, optimizing its value too
much can hinder ground truth performance (first increase, then decrease).

45

Check out paper: Scaling Laws for Reward Model Overoptimization

Gold Model:

Ideally, we want human labelers to be the “gold” model. But that’s too expensive.

So, we use a synthetic setting and regard a 6B large model trained on human labels as the gold model.
The proxy RMs are then trained on annotations from this gold model.

18.2.4.3 PPO
• Objective: want policy update to be in a “trust region” (Clip-PPO, see This Blog for details)

where 𝐴𝑡 is the advantage function of taking the current action, to estimate 𝐴𝑡, we need to jointly
train a 𝑉 network.

• Problems:
‣ In addition to the policy model, we also need a reference model, a reward model, and a value model.
‣ Both of them are also LLMs (for best performance).
‣ There are too many hyper-parameters to tune.
‣ Quite difficult to make it really work.

18.2.4.4 DPO
• A much more simpler approach.
• Objective:

No reward model, and no value model.

Check out paper: Direct Preference Optimization: Your Language Model is Secretly a Reward Model

46

https://proceedings.mlr.press/v202/gao23h/gao23h.pdf
https://hrl.boyuai.com/chapter/2/ppo算法
https://arxiv.org/pdf/2305.18290

• Derivation:

The RLHF objective

With no restrictions, it actually has a closed-form solution

Pf. See Appendix A.1 or homework.

Taking log on both sides:

We substitute this into Bradley-Terry model for preference:

Bradley-Terry Model: 𝑝∗(𝑦1 ≻ 𝑦2 | 𝑥) = exp(𝑟∗(𝑥,𝑦1))
exp(𝑟∗(𝑥,𝑦1))+ exp(𝑟∗(𝑥,𝑦2)) .

⇒:

Finally, we use labeled preference data and MLE to fit an implicit reward model whose optimal policy
is 𝜋𝜃.

• DPO by-passes the reward model and RL.
‣ More Stable and simpler, while RLHF-PPO has more potential.

Model name Year Algorithm involved
Llama 3 2024 DPO
DeepSeek 2024 GRPO (variant of PPO)
ChatGLM 2024 PPO, DPO

Qwen 2023 PPO
Zephyr 2023 DPO

InstructGPT 2022 PPO

47

18.3 Research
• RLAIF: RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback

• DPO has many variants!

• Is preference data really needed?

‣ The phi series of model, introduced by Microsoft. Do heavy data filtering and synthetic data
generation for textbook-level quality data. And just do standard pretraining and tuning.

Check out: Textbooks Are All You Need

‣ We observe that the aligned model have some styles (lengthy, polite, summarize, bullet-points,
etc.) We can teach the LLM to follow these superficial styles via high-quality ICL
demonstrations, without doing PPO or DPO.

Check out: The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context Learning

Part III: Research Topics

19 Parameter-efficient tuning

48

https://arxiv.org/pdf/2309.00267
https://arxiv.org/pdf/2306.11644
https://arxiv.org/pdf/2312.01552

	Logistics
	Scoring thresholds
	Reference
	Context-Free Grammar(CFG)
	Terminology
	CNF
	Parsing
	CKY Parsing
	Limitation
	Probabilistic context-free grammars (PCFG)
	Neural CKY

	Latent Semantic Analysis(LSA)
	Term-Document Matrix
	Normalization
	Problem
	TF-IDF normalization
	Pointwise mutual information (PMI)

	Hidden Markov Model (HMM)
	Motivating task
	HMM Generation
	The forward algorithm
	The backward algorithm
	Combined
	Inference: most probable tag sequence
	Acquiring π,a,b

	N-Gram
	Language Model
	Naive Approach: Unigram LM
	Bigram, Trigram, N-gram
	Data Sparsity
	Add-k Smoothing
	Interpolation
	Backoff

	Perplexity

	Word2Vec
	Tasks
	Skip-gram
	CBOW (Continous Bag-of-Words)

	Parameters to Learn
	Skip-Gram objective
	CBOW objective
	Trick: Negative sampling (skip-gram version)

	Word Vector Properties
	Linear Word Analogies

	Brief Review of ML/DL Basics
	KL-Divergence
	Multi-Class classification
	Neural Networks

	Neural Network Language Model
	FeedForward NN LM
	Recurrent Neural Network Language Model
	Architecture
	Back-Propogation Through Time(BPTT)
	Parellel Computation
	Sampling with RNNLM
	LSTM(skipped) & GRU

	Tricks in Deep Learning
	Residual Network

	More On RNN
	More on AR-LM
	Bi-directional RNN
	Encoder-Decoder model for seq2seq task
	Attention!!!

	Decoding from a LM
	Greedy Decoding:
	Beam-Search
	BLEU metric for MT

	Back Translation for MT Data Augmentation

	Text Classification
	FastText + FNN
	CNN for text classification
	Recursive neural networks with tree structure
	GLUE tasks
	Deep contextualized word representation (ELMo)

	VAE-LM
	Motivation
	Generation:
	Training:
	Optimization Challenge:

	Subword Tokenization
	Byte Pair Encoding(BPE) Tokenization
	Other Approaches

	Transformers, BERT, GPT
	Transformer
	Self-Attention
	Multi-Head Attention
	Other Designs in the attention block
	Position Encoding
	Learning Rate Warmup and Linear Decay

	BERT
	Masked language modeling (MLM)
	Next sentence prediction (NSP)
	BERT finetuning
	Extensions of BERT

	Transformer Decoder & GPTs
	Causal Mask
	GPTs
	The top-K sampling algorithm

	Rethink MLE, Sampling, and Bad Behavior
	Criticizing teacher forcing (MLE)
	Teacher Forcing(MLE)
	The exposure bias hypothesis:
	Language GANs
	The Gumbel-softmax reparameterization
	The Reinforce Trick

	Sampling algorithms
	Top-k Sampling
	Nucleus(top-P):
	Tempered (T)
	Common Features of these three sampling methods

	Correcting bad behavior of NLG models
	Biased decoding
	Unlikelihood training for repetition
	The MMI criterion
	Training with negative examples
	Hallucination

	Transformer encoder-decoder & RoPE
	Encoder-Decoder Transformer
	Architecture
	Examples:
	From Encoder-Decoder to Decoder-only

	Rotary position embedding (RoPE)

	GPT-3 & In-Context Learning
	Scaling Law of LMs
	Data Composition of GPT-3
	Scaling Law

	GPT-3 & In-Context Learning
	In-Context Learning
	Terminology of GPT-3
	Few-shot learning before GPT3: MAML
	GPT-3 on NLP-community

	Chain-of-Thought(CoT) Prompting
	Idea
	Results
	Zero-Shot CoT
	Intuitions behind why CoT works

	More (Research) on CoT & ICL
	CoT with self-consistency
	Tree of thoughts (ToT)
	Bias in ICL
	Majority and Recency Bias
	Calibration of few-shot prediction

	Rethink ICL: The role of demonstration
	ICL and induction heads
	Observation: Emergence of ICL
	Induction heads (for Repetition)
	Key Finding

	Instruction tuning & alignment
	Instruction tuning
	FLAN (Finetuned Language Net)
	Scaling instruction-finetuned language models

	Alignment: RLHF
	Motivation
	Application: RLHF & GPT3.5
	Alternative methods
	Prompting
	Best of N (BoN)

	RLHF
	Reward Model Training
	The RL Phase
	PPO
	DPO

	Research

	Parameter-efficient tuning

